/usr/include/ql/experimental/credit/recursivelossmodel.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009, 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_recursive_loss_model_hpp
#define quantlib_recursive_loss_model_hpp
#include <ql/experimental/credit/constantlosslatentmodel.hpp>
#include <ql/experimental/credit/defaultlossmodel.hpp>
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif
#include <boost/bind.hpp>
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic pop
#endif
#include <map>
#include <algorithm>
namespace QuantLib {
/*! Recursive STCDO default loss model for a heterogeneous pool of names.
The pool names are heterogeneous in their default probabilities, notionals
and recovery rates. Correlations are given by the latent model.
The recursive pricing algorithm used here is described in Andersen, Sidenius
and Basu; "All your hedges in one basket", Risk, November 2003, pages 67-72
Notice that using copulas other than Gaussian it is only an
approximation (see remark on p.68).
\todo Make the loss unit equal to some small fraction depending on the
portfolio loss weights (notionals and recoveries). As it is now this
is ok for pricing but not for risk metrics. See the discussion in O'Kane
18.3.2
\todo Intengrands should all use the inverted probabilities for
performance instead of calling the copula inversion with the same vals.
*/
template<class copulaPolicy>
class RecursiveLossModel : public DefaultLossModel {
public:
RecursiveLossModel(
const boost::shared_ptr<ConstantLossLatentmodel<copulaPolicy> >& m,
// nope! use max common divisor. See O'Kane. Or give both options at least.
Size nbuckets = 1)
: copula_(m), nBuckets_(nbuckets), wk_() { }
private:
/*!
@param pDefDate Vector of unconditional default probabilities for each
live name (at the current evaluation date). This is passed instead of
the date for performance reasons (if in the future other magnitudes
-e.g. lgd- are contingent on the date they shouldd be passed too).
*/
Disposable<std::map<Real, Probability> > conditionalLossDistrib(
const std::vector<Probability>& pDefDate,
const std::vector<Real>& mktFactor) const;
Real expectedConditionalLoss(const std::vector<Probability>& pDefDate, //<< never used!!
const std::vector<Real>& mktFactor) const;
Disposable<std::vector<Real> > conditionalLossProb(
const std::vector<Probability>& pDefDate,
//const Date& date,
const std::vector<Real>& mktFactor) const;
//versions using the P-inverse, deprecate the former
Disposable<std::map<Real, Probability> > conditionalLossDistribInvP(
const std::vector<Real>& pDefDate,
//const Date& date,
const std::vector<Real>& mktFactor) const;
Real expectedConditionalLossInvP(const std::vector<Real>& pDefDate,
//const Date& date,
const std::vector<Real>& mktFactor) const;
protected:
void resetModel();
public:
/* Expected tranche Loss calculation.
This is computed from the first equation on page 70 (not numbered)
Notice that while we want to compute:
\f[
EL(t) = \sum_{l_k}l_k P(l;t) =
\sum_{l_k}l_k \int P(l_k;t|\omega) d\omega q(\omega)
\f]
One can invert the sumation and the integral order to:
\f[
EL(t) = \int\,q(\omega)\,d\omega\,\sum_{l_k}\,l_k\,P(l_k;t|\omega) =
\int\,q(\omega)\,d\omega\,EL(t|\omega)
\f]
and this is the way it is integrated here. The recursion formula
makes it easier this way.
*/
Real expectedTrancheLoss(const Date& date) const;
Disposable<std::vector<Real> > lossProbability(const Date& date) const;
// REMEBER THIS HAS TO BE MOVED TO A DISTRIBUTION OBJECT.............
Disposable<std::map<Real, Probability> > lossDistribution(
const Date& d) const;
// INTEGRATE THEN SEARCH RATHER THAN SEARCH AND THEN INTEGRATE:
// Here I am not using a search because the point might not be attainable
// (loss distrib is not continuous)
Real percentile(const Date& d, Real percentile) const;
Real expectedShortfall(const Date& d, Real perctl) const;
protected:
const boost::shared_ptr<ConstantLossLatentmodel<copulaPolicy> > copula_;
private:
// loss model descriptor members
const Size nBuckets_;
mutable std::vector<Real> wk_;
mutable Real lossUnit_;
//! name to name factor. In the single factor copula:
// correl = beta * beta
// When constructing through a single correlation number the factor is
// taken to be the positive swuare root of this number in the copula.
////////in the latent model now: mutable std::vector<Real> oneFactorCorrels_;
// cached remaining basket magnitudes:
mutable Real attachAmount_,
detachAmount_,
notional_;
mutable Size remainingBsktSize_;
mutable std::vector<Real> notionals_;
};
typedef RecursiveLossModel<GaussianCopulaPolicy> RecursiveGaussLossModel;
// Inlines ------------------------------------------------
template<class CP>
inline Real RecursiveLossModel<CP>::expectedTrancheLoss(
const Date& date) const
{
/*
std::map<Real, Probability> dist = lossDistribution(date);
Real expLoss = 0.;
std::map<Real, Probability>::iterator distIt = dist.begin();
while(distIt != dist.end()) {
Real loss = distIt->first * lossUnit_;
loss = std::max(std::min(loss, detachAmount_)-attachAmount_, 0.);
// MIN MAX BUGS ....??
expLoss += loss * distIt->second;
distIt++;
}
return expLoss ;
///////////////////////////////////////////////////////////////////////
// calculate inverted unconditional Ps first so we save the inversion:
// TO DO : turn to STL algorithm code
std::vector<Probability> uncDefProb =
basket_->remainingProbabilities(date);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&RecursiveLossModel::expectedConditionalLoss,
this,
boost::cref(uncDefProb),
_1)
)
);
*/
/**/
std::vector<Probability> uncDefProb =
basket_->remainingProbabilities(date);
std::vector<Real> invProb;
for(Size i=0; i<uncDefProb.size(); i++)
invProb.push_back(copula_->inverseCumulativeY(uncDefProb[i], i));
/// invProb.push_back(CP::inverseCumulativeY(uncDefProb[i], i));//<-static call
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&RecursiveLossModel::expectedConditionalLossInvP,
this,
boost::cref(invProb),
_1)
)
);
}
template<class CP>
inline Disposable<std::vector<Real> >
RecursiveLossModel<CP>::lossProbability(const Date& date) const {
std::vector<Probability> uncDefProb =
basket_->remainingProbabilities(date);
return copula_->integratedExpectedValue(
boost::function<Disposable<std::vector<Real> > (const std::vector<Real>& v1)>(
boost::bind(
&RecursiveLossModel::conditionalLossProb,
this,
boost::cref(uncDefProb),
_1)
)
);
}
// -------------------------------------------------------------------
template<class CP>
void RecursiveLossModel<CP>::resetModel() {
// basket update:
notionals_ = basket_->remainingNotionals();
notional_ = basket_->remainingNotional();
attachAmount_ = basket_->remainingAttachmentAmount();
detachAmount_ = basket_->remainingDetachmentAmount();
// model parameters:
remainingBsktSize_ = notionals_.size();
copula_->resetBasket(basket_.currentLink());
std::vector<Real> lgdsTmp, lgds;
for(Size i=0; i<remainingBsktSize_; i++)
lgds.push_back(notionals_[i]*(1.-copula_->recoveries()[i]));
lgdsTmp = lgds;
///////////////std::remove(lgds.begin(), lgds.end(), 0.);
lgds.erase(std::remove(lgds.begin(), lgds.end(), 0.), lgds.end());
lossUnit_ = *(std::min_element(lgds.begin(), lgds.end()))
/ nBuckets_;
for(Size i=0; i<remainingBsktSize_; i++)
wk_.push_back(std::floor(lgdsTmp[i]/lossUnit_ + .5));
}
// make it return a distribution object?
template<class CP>
Disposable<std::map<Real, Probability> >
RecursiveLossModel<CP>::lossDistribution(const Date& d) const
{
std::map<Real, Probability> distrib;
std::vector<Real> values = lossProbability(d);
Real sum = 0.;
for(Size i=0; i<values.size(); i++) {
distrib.insert(std::make_pair<Real, Probability>(i * lossUnit_,
sum + values[i]));
sum += values[i];
}
return distrib;
}
// Integrate then search rather than search and then integrate?
// Here I am not using a search because the point might be not attainable
// (loss distrib is not continuous)
template<class CP>
Real RecursiveLossModel<CP>::percentile(const Date& d,
Real percentile) const
{
std::map<Real, Probability> dist = lossDistribution(d);
if(dist.begin()->second >=1.) return dist.begin()->first;
// deterministic case (e.g. date requested is todays date)
if(dist.size() == 1) return dist.begin()->first;
if(percentile == 1.) return dist.rbegin()->second;
if(percentile == 0.) return dist.begin()->second;
std::map<Real, Probability>::const_iterator itdist = dist.begin();
while(itdist->second <= percentile) itdist++;
Real valPlus = itdist->second;
Real xPlus = itdist->first;
itdist--;//we r never 1st or last, because of tests above
Real valMin = itdist->second;
Real xMin = itdist->first;
// return xPlus-(xPlus-xMin)*(valPlus-percentile)/(valPlus-valMin);
Real portfLoss = xPlus-(xPlus-xMin)*(valPlus-percentile)
/(valPlus-valMin);
return //remainingNotional_ *
std::min(std::max(portfLoss - attachAmount_, 0.),
detachAmount_ - attachAmount_);/////(detach_ - attach_);
}
template<class CP>
Real RecursiveLossModel<CP>::expectedShortfall(const Date& d,
Real perctl) const
{
if(d == Settings::instance().evaluationDate()) return 0.;
std::map<Real, Probability> distrib = lossDistribution(d);
std::map<Real, Probability>::iterator itNxt, itDist =
distrib.begin();
for(; itDist != distrib.end(); itDist++)
if(itDist->second >= perctl) break;
itNxt = itDist; itDist--;// what if we are on the first one?!!!
// One could linearly triangulate the exact point and get extra
// precission on the first(broken) period.
if(itNxt != distrib.end()) {
Real lossNxt = std::min(std::max(itNxt->first - attachAmount_,
0.), detachAmount_ - attachAmount_);
Real lossHere = std::min(std::max(itDist->first - attachAmount_,
0.), detachAmount_ - attachAmount_);
Real val = lossNxt - (itNxt->second - perctl) *
(lossNxt - lossHere) / (itNxt->second - itDist->second);
Real suma = (itNxt->second - perctl) * (lossNxt + val) * .5;
itDist++;itNxt++;
do{
lossNxt = std::min(std::max(itNxt->first - attachAmount_,
0.), detachAmount_ - attachAmount_);
lossHere = std::min(std::max(itDist->first - attachAmount_,
0.), detachAmount_ - attachAmount_);
suma += .5 * (lossHere + lossNxt) * (itNxt->second -
itDist->second);
itDist++;itNxt++;
}while(itNxt != distrib.end());
return suma / (1.-perctl);
}
return 0.;// well, we are in error.... fix: FAIL
}
template<class CP>
Disposable<std::map<Real, Probability> >
RecursiveLossModel<CP>::conditionalLossDistrib(
const std::vector<Probability>& pDefDate,
//const Date& date,
const std::vector<Real>& mktFactor) const
{
//eq. 10 p.68
//attainable losses distribution, recursive algorithm
const std::vector<Probability>& uncDefProb = pDefDate;// alias, remove
std::map<Real, Probability> pIndepDistrib;
//////// K=0
pIndepDistrib.insert(std::make_pair(0., 1.));
for(Size iName=0; iName<remainingBsktSize_; iName++) {
Probability pDef =
copula_->conditionalDefaultProbability(uncDefProb[iName], iName,
mktFactor);
////// iterate on all possible losses in the distribution:
std::map<Real, Probability> pDistTemp;
std::map<Real, Probability>::iterator distIt =
pIndepDistrib.begin();
while(distIt != pIndepDistrib.end()) {
/// update prob if this name does not default
std::map<Real, Probability>::iterator matchIt
= pDistTemp.find(distIt->first);
if(matchIt != pDistTemp.end()) {
matchIt->second += distIt->second * (1.-pDef);
}else{
pDistTemp.insert(std::make_pair(distIt->first,
distIt->second * (1.-pDef)));
}
//// and if it does
matchIt = pDistTemp.find(distIt->first + wk_[iName]);
if(matchIt != pDistTemp.end()) {
matchIt->second += distIt->second * pDef;
}else{
pDistTemp.insert(std::make_pair(
distIt->first+wk_[iName], distIt->second * pDef));
}
distIt++;
}
///// copy back
pIndepDistrib = pDistTemp;
}
/* Apply tranche limits now .... mind you this could be done outside*/
//// to be done....
return pIndepDistrib;
}
template<class CP>
Disposable<std::map<Real, Probability> >
// twice?! rewrite one in terms of the other, this is a duplicate!
RecursiveLossModel<CP>::conditionalLossDistribInvP(
const std::vector<Real>& invpDefDate,
//const Date& date,
const std::vector<Real>& mktFactor) const
{
// eq. 10 p.68
// attainable losses distribution, recursive algorithm
std::map<Real, Probability> pIndepDistrib;
// K=0
pIndepDistrib.insert(std::make_pair(0., 1.));
for(Size iName=0; iName<remainingBsktSize_; iName++) {
Probability pDef =
copula_->conditionalDefaultProbabilityInvP(invpDefDate[iName],
iName, mktFactor);
// iterate on all possible losses in the distribution:
std::map<Real, Probability> pDistTemp;
std::map<Real, Probability>::iterator distIt =
pIndepDistrib.begin();
while(distIt != pIndepDistrib.end()) {
// update prob if this name does not default
std::map<Real, Probability>::iterator matchIt
= pDistTemp.find(distIt->first);
if(matchIt != pDistTemp.end()) {
matchIt->second += distIt->second * (1.-pDef);
}else{
pDistTemp.insert(std::make_pair(distIt->first,
distIt->second * (1.-pDef)));
}
// and if it does
matchIt = pDistTemp.find(distIt->first + wk_[iName]);
if(matchIt != pDistTemp.end()) {
matchIt->second += distIt->second * pDef;
}else{
pDistTemp.insert(std::make_pair(
distIt->first+wk_[iName], distIt->second * pDef));
}
distIt++;
}
// copy back
pIndepDistrib = pDistTemp;
}
/* Apply tranche limits now .... mind you this could be done outside*/
return pIndepDistrib;
}
/*
Bugs here???. The max min on the tranche looks
wrong. It is better to have a tranche function since that way we can avoid
adding up losses over all the posible losses rather than just over the
tranche limits.
*/
//! Portfolio loss conditional to the market factor value
template<class CP>
Real RecursiveLossModel<CP>::expectedConditionalLoss(
const std::vector<Probability>& pDefDate,
//const Date& date,
const std::vector<Real>& mktFactor) const
{
std::map<Real, Probability> pIndepDistrib =
conditionalLossDistrib(pDefDate, mktFactor);
// get the expected value subject to the value of the market
// factor.
Real expLoss = 0.;
//---------------------------------------------------------------
/* This is the original (easy to read) loop which I have partially
unroll below to take profit of the fact that once we go over
the tranche top the loss amount is fixed:
*/
std::map<Real, Probability>::iterator distIt =
pIndepDistrib.begin();
while(distIt != pIndepDistrib.end()) {
Real loss = distIt->first * lossUnit_;
// loss = std::max(std::min(loss, detachAmount_)-attachAmount_, 0.);
loss = std::min(std::max(loss - attachAmount_, 0.),
detachAmount_ - attachAmount_);
// MIN MAX BUGS ....??
expLoss += loss * distIt->second;
distIt++;
}
return expLoss ;
}
template<class CP>
// again, I am duplicating code.
Real RecursiveLossModel<CP>::expectedConditionalLossInvP(
const std::vector<Real>& invPDefDate,
//const Date& date,
const std::vector<Real>& mktFactor) const
{
std::map<Real, Probability> pIndepDistrib =
conditionalLossDistribInvP(invPDefDate, mktFactor);
// get the expected value subject to the value of the market
// factor.
Real expLoss = 0.;
//---------------------------------------------------------------
/* This is the original (easy to read) loop which I have partially
unroll below to take profit of the fact that once we go over
the tranche top the loss amount is fixed:
*/
std::map<Real, Probability>::iterator distIt =
pIndepDistrib.begin();
while(distIt != pIndepDistrib.end()) {
Real loss = distIt->first * lossUnit_;
// loss = std::max(std::min(loss, detachAmount_)-attachAmount_, 0.);
loss = std::min(std::max(loss - attachAmount_, 0.),
detachAmount_ - attachAmount_);
// MIN MAX BUGS ....???
expLoss += loss * distIt->second;
distIt++;
}
return expLoss ;
}
template<class CP>
Disposable<std::vector<Real> > RecursiveLossModel<CP>::conditionalLossProb(
const std::vector<Probability>& pDefDate,
//const Date& date,
const std::vector<Real>& mktFactor) const
{
std::map<Real, Probability> pIndepDistrib =
conditionalLossDistrib(pDefDate, mktFactor);
std::vector<Real> results;
std::map<Real, Probability>::iterator distIt = pIndepDistrib.begin();
while(distIt != pIndepDistrib.end()) {
//Real loss = distIt->first * loss_unit_
// ;
//loss = std::max(std::min(loss,
// results_.xMax)-results_.xMin, 0.);
//expLoss += loss * distIt->second;
results.push_back(distIt->second);
distIt++;
}
return results;
}
}
#endif
|