/usr/include/ql/experimental/math/frankcopularng.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2010 Hachemi Benyahia
Copyright (C) 2010 DeriveXperts SAS
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file frankcopularng.hpp
\brief Frank copula random-number generator
*/
#ifndef quantlib_frank_copula_rng_hpp
#define quantlib_frank_copula_rng_hpp
#include <ql/methods/montecarlo/sample.hpp>
#include <ql/errors.hpp>
#include <vector>
namespace QuantLib {
//! Frank copula random-number generator
template <class RNG>
class FrankCopulaRng {
public:
typedef Sample<std::vector<Real> > sample_type;
typedef RNG urng_type;
explicit FrankCopulaRng(const RNG& uniformGenerator, Real theta);
sample_type next() const;
private:
Real theta_;
RNG uniformGenerator_;
};
template <class RNG>
FrankCopulaRng<RNG>::FrankCopulaRng(const RNG& ug, Real th)
: uniformGenerator_(ug), theta_(th) {
QL_REQUIRE(th != 0.0,
"theta (" << th << ") must be different from 0");
}
template <class RNG>
inline typename FrankCopulaRng<RNG>::sample_type
FrankCopulaRng<RNG>::next() const {
typename RNG::sample_type v1 = uniformGenerator_.next();
typename RNG::sample_type v2 = uniformGenerator_.next();
Real u1 = v1.value;
Real u2 = (-1.0/theta_)*log(1.0+(v2.value*(1.0-exp(-theta_)))/(v2.value*(exp(-theta_*v1.value)-1.0)-exp(-theta_*v1.value)));
std::vector<Real> u;
u.push_back(u1);
u.push_back(u2);
return sample_type(u,v1.weight*v2.weight);
}
}
#endif
|