/usr/include/ql/experimental/math/numericaldifferentiation.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file numericaldifferentiation.hpp
\brief numerical differentiation of arbitrary order
and on irregular grids
*/
#ifndef quantlib_numerical_differentiation_hpp
#define quantlib_numerical_differentiation_hpp
#include <ql/math/array.hpp>
#include <boost/function.hpp>
namespace QuantLib {
//! Numerical Differentiation on arbitrarily spaced grids
/*! References:
B. Fornberg, 1988. Generation of Finite Difference Formulas
on Arbitrarily Spaced Grids,
http://amath.colorado.edu/faculty/fornberg/Docs/MathComp_88_FD_formulas.pdf
*/
class NumericalDifferentiation : public std::unary_function<Real, Real> {
public:
enum Scheme { Central, Backward, Forward };
NumericalDifferentiation(
const boost::function<Real(Real)>& f,
Size orderOfDerivative, const Array& x_offsets);
NumericalDifferentiation(
const boost::function<Real(Real)>& f,
Size orderOfDerivative,
Real stepSize, Size steps, Scheme scheme);
Real operator()(Real x) const;
const Array& offsets() const;
const Array& weights() const;
private:
const Array offsets_, w_;
const boost::function<Real(Real)> f_;
};
inline Real NumericalDifferentiation::operator()(Real x) const {
Real s = 0.0;
for (Size i=0; i < w_.size(); ++i) {
if (std::fabs(w_[i]) > QL_EPSILON*QL_EPSILON) {
s += w_[i] * f_(x+offsets_[i]);
}
}
return s;
}
inline const Array& NumericalDifferentiation::weights() const {
return w_;
}
inline const Array& NumericalDifferentiation::offsets() const {
return offsets_;
}
}
#endif
|