/usr/include/ql/math/integrals/gaussianquadratures.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005 Klaus Spanderen
Copyright (C) 2005 Gary Kennedy
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file gaussianquadratures.hpp
\brief Integral of a 1-dimensional function using the Gauss quadratures
*/
#ifndef quantlib_gaussian_quadratures_hpp
#define quantlib_gaussian_quadratures_hpp
#include <ql/math/array.hpp>
#include <ql/math/integrals/gaussianorthogonalpolynomial.hpp>
namespace QuantLib {
class GaussianOrthogonalPolynomial;
//! Integral of a 1-dimensional function using the Gauss quadratures method
/*! References:
Gauss quadratures and orthogonal polynomials
G.H. Gloub and J.H. Welsch: Calculation of Gauss quadrature rule.
Math. Comput. 23 (1986), 221-230
"Numerical Recipes in C", 2nd edition,
Press, Teukolsky, Vetterling, Flannery,
\test the correctness of the result is tested by checking it
against known good values.
*/
class GaussianQuadrature {
public:
GaussianQuadrature(Size n,
const GaussianOrthogonalPolynomial& p);
template <class F>
Real operator()(const F& f) const {
Real sum = 0.0;
for (Integer i = order()-1; i >= 0; --i) {
sum += w_[i] * f(x_[i]);
}
return sum;
}
Size order() const { return x_.size(); }
const Array& weights() { return w_; }
const Array& x() { return x_; }
protected:
Array x_, w_;
};
//! generalized Gauss-Laguerre integration
/*! This class performs a 1-dimensional Gauss-Laguerre integration.
\f[
\int_{0}^{\inf} f(x) \mathrm{d}x
\f]
The weighting function is
\f[
w(x;s)=x^s \exp{-x}
\f]
and \f[ s > -1 \f]
*/
class GaussLaguerreIntegration : public GaussianQuadrature {
public:
GaussLaguerreIntegration(Size n, Real s = 0.0)
: GaussianQuadrature(n, GaussLaguerrePolynomial(s)) {}
};
//! generalized Gauss-Hermite integration
/*! This class performs a 1-dimensional Gauss-Hermite integration.
\f[
\int_{-\inf}^{\inf} f(x) \mathrm{d}x
\f]
The weighting function is
\f[
w(x;\mu)=|x|^{2\mu} \exp{-x*x}
\f]
and \f[ \mu > -0.5 \f]
*/
class GaussHermiteIntegration : public GaussianQuadrature {
public:
GaussHermiteIntegration(Size n, Real mu = 0.0)
: GaussianQuadrature(n, GaussHermitePolynomial(mu)) {}
};
//! Gauss-Jacobi integration
/*! This class performs a 1-dimensional Gauss-Jacobi integration.
\f[
\int_{-1}^{1} f(x) \mathrm{d}x
\f]
The weighting function is
\f[
w(x;\alpha,\beta)=(1-x)^\alpha (1+x)^\beta
\f]
*/
class GaussJacobiIntegration : public GaussianQuadrature {
public:
GaussJacobiIntegration(Size n, Real alpha, Real beta)
: GaussianQuadrature(n, GaussJacobiPolynomial(alpha, beta)) {}
};
//! Gauss-Hyperbolic integration
/*! This class performs a 1-dimensional Gauss-Hyperbolic integration.
\f[
\int_{-\inf}^{\inf} f(x) \mathrm{d}x
\f]
The weighting function is
\f[
w(x)=1/cosh(x)
\f]
*/
class GaussHyperbolicIntegration : public GaussianQuadrature {
public:
GaussHyperbolicIntegration(Size n)
: GaussianQuadrature(n, GaussHyperbolicPolynomial()) {}
};
//! Gauss-Legendre integration
/*! This class performs a 1-dimensional Gauss-Legendre integration.
\f[
\int_{-1}^{1} f(x) \mathrm{d}x
\f]
The weighting function is
\f[
w(x)=1
\f]
*/
class GaussLegendreIntegration : public GaussianQuadrature {
public:
GaussLegendreIntegration(Size n)
: GaussianQuadrature(n, GaussJacobiPolynomial(0.0, 0.0)) {}
};
//! Gauss-Chebyshev integration
/*! This class performs a 1-dimensional Gauss-Chebyshev integration.
\f[
\int_{-1}^{1} f(x) \mathrm{d}x
\f]
The weighting function is
\f[
w(x)=(1-x^2)^{-1/2}
\f]
*/
class GaussChebyshevIntegration : public GaussianQuadrature {
public:
GaussChebyshevIntegration(Size n)
: GaussianQuadrature(n, GaussJacobiPolynomial(-0.5, -0.5)) {}
};
//! Gauss-Chebyshev integration (second kind)
/*! This class performs a 1-dimensional Gauss-Chebyshev integration.
\f[
\int_{-1}^{1} f(x) \mathrm{d}x
\f]
The weighting function is
\f[
w(x)=(1-x^2)^{1/2}
\f]
*/
class GaussChebyshev2ndIntegration : public GaussianQuadrature {
public:
GaussChebyshev2ndIntegration(Size n)
: GaussianQuadrature(n, GaussJacobiPolynomial(0.5, 0.5)) {}
};
//! Gauss-Gegenbauer integration
/*! This class performs a 1-dimensional Gauss-Gegenbauer integration.
\f[
\int_{-1}^{1} f(x) \mathrm{d}x
\f]
The weighting function is
\f[
w(x)=(1-x^2)^{\lambda-1/2}
\f]
*/
class GaussGegenbauerIntegration : public GaussianQuadrature {
public:
GaussGegenbauerIntegration(Size n, Real lambda)
: GaussianQuadrature(n, GaussJacobiPolynomial(lambda-0.5, lambda-0.5))
{}
};
//! tabulated Gauss-Legendre quadratures
class TabulatedGaussLegendre {
public:
TabulatedGaussLegendre(Size n = 20) { order(n); }
template <class F>
Real operator() (const F& f) const {
QL_ASSERT(w_!=0, "Null weights" );
QL_ASSERT(x_!=0, "Null abscissas");
Size startIdx;
Real val;
const Size isOrderOdd = order_ & 1;
if (isOrderOdd) {
QL_ASSERT((n_>0), "assume at least 1 point in quadrature");
val = w_[0]*f(x_[0]);
startIdx=1;
} else {
val = 0.0;
startIdx=0;
}
for (Size i=startIdx; i<n_; ++i) {
val += w_[i]*f( x_[i]);
val += w_[i]*f(-x_[i]);
}
return val;
}
void order(Size);
Size order() const { return order_; }
private:
Size order_;
const Real* w_;
const Real* x_;
Size n_;
static const Real w6[3];
static const Real x6[3];
static const Size n6;
static const Real w7[4];
static const Real x7[4];
static const Size n7;
static const Real w12[6];
static const Real x12[6];
static const Size n12;
static const Real w20[10];
static const Real x20[10];
static const Size n20;
};
}
#endif
|