This file is indexed.

/usr/include/ql/math/interpolations/kernelinterpolation.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Dimitri Reiswich

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/


#ifndef quantlib_kernel_interpolation_hpp
#define quantlib_kernel_interpolation_hpp

#include <ql/math/interpolation.hpp>
#include <ql/math/matrixutilities/qrdecomposition.hpp>

/*! \file kernelinterpolation.hpp
    \brief Kernel interpolation
*/

namespace QuantLib {

    namespace detail {

        template <class I1, class I2, class Kernel>
        class KernelInterpolationImpl
            : public Interpolation::templateImpl<I1,I2> {
          public:
            KernelInterpolationImpl(const I1& xBegin, const I1& xEnd,
                                    const I2& yBegin,
                                    const Kernel& kernel)
            : Interpolation::templateImpl<I1,I2>(xBegin, xEnd, yBegin),
              xSize_(Size(xEnd-xBegin)),invPrec_(1.0e-7),
              M_(xSize_,xSize_), alphaVec_(xSize_), yVec_(xSize_),
              kernel_(kernel) {}

            void update() {
                updateAlphaVec();
            }

            Real value(Real x) const {

                Real res=0.0;

                for( Size i=0; i< xSize_;++i){
                    res+=alphaVec_[i]*kernelAbs(x,this->xBegin_[i]);
                }

                return res/gammaFunc(x);
            }

            Real primitive(Real) const {
                QL_FAIL("Primitive calculation not implemented "
                        "for kernel interpolation");
            }

            Real derivative(Real) const {
                QL_FAIL("First derivative calculation not implemented "
                        "for kernel interpolation");
            }

            Real secondDerivative(Real) const {
                QL_FAIL("Second derivative calculation not implemented "
                        "for kernel interpolation");
            }

            // the calculation will solve y=M*a for a.  Due to
            // singularity or rounding errors the recalculation
            // M*a may not give y. Here, a failure will be thrown if
            // |M*a-y|>=invPrec_

            void setInverseResultPrecision(Real invPrec){
                invPrec_=invPrec;
            }

        private:

            Real kernelAbs(Real x1, Real x2)const{
                return kernel_(std::fabs(x1-x2));
            }

            Real gammaFunc(Real x)const{

                Real res=0.0;

                for(Size i=0; i< xSize_;++i){
                    res+=kernelAbs(x,this->xBegin_[i]);
                }
                return res;
            }

            void updateAlphaVec(){
                // Function calculates the alpha vector with given
                // fixed pillars+values

                // Write Matrix M
                Real tmp=0.0;

                for(Size rowIt=0; rowIt<xSize_;++rowIt){

                    yVec_[rowIt]=this->yBegin_[rowIt];
                    tmp=1.0/gammaFunc(this->xBegin_[rowIt]);

                    for(Size colIt=0; colIt<xSize_;++colIt){
                        M_[rowIt][colIt]=kernelAbs(this->xBegin_[rowIt],
                                                   this->xBegin_[colIt])*tmp;
                    }
                }

                // Solve y=M*\alpha for \alpha
                alphaVec_ = qrSolve(M_, yVec_);

                // check if inversion worked up to a reasonable precision.
                // I've chosen not to check determinant(M_)!=0 before solving

                Array diffVec=Abs(M_*alphaVec_ - yVec_);

                for (Size i=0; i<diffVec.size(); ++i) {
                    QL_REQUIRE(diffVec[i] < invPrec_,
                               "Inversion failed in 1d kernel interpolation");
                }
            }

            Size xSize_;
            Real invPrec_;
            Matrix M_;
            Array alphaVec_,yVec_;
            Kernel kernel_;
        };

    } // end namespace detail


    //! Kernel interpolation between discrete points
    /*! Implementation of the kernel interpolation approach, which can
        be found in "Foreign Exchange Risk" by Hakala, Wystup page
        256.

        The kernel in the implementation is kept general, although a Gaussian
        is considered in the cited text.

        \ingroup interpolations
    */
    class KernelInterpolation : public Interpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted.
            \pre kernel needs a Real operator()(Real x) implementation
        */
        template <class I1, class I2, class Kernel>
        KernelInterpolation(const I1& xBegin, const I1& xEnd,
                            const I2& yBegin,
                            const Kernel& kernel) {
            impl_ = boost::shared_ptr<Interpolation::Impl>(new
                detail::KernelInterpolationImpl<I1,I2,Kernel>(xBegin, xEnd,
                                                              yBegin, kernel));
            impl_->update();
        }
    };

}

#endif