This file is indexed.

/usr/include/ql/math/interpolations/sabrinterpolation.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Ferdinando Ametrano
 Copyright (C) 2007 Marco Bianchetti
 Copyright (C) 2007 François du Vignaud
 Copyright (C) 2007 Giorgio Facchinetti
 Copyright (C) 2006 Mario Pucci
 Copyright (C) 2006 StatPro Italia srl
 Copyright (C) 2014 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file sabrinterpolation.hpp
    \brief SABR interpolation interpolation between discrete points
*/

#ifndef quantlib_sabr_interpolation_hpp
#define quantlib_sabr_interpolation_hpp

#include <ql/math/interpolations/xabrinterpolation.hpp>
#include <ql/termstructures/volatility/sabr.hpp>

#include <boost/make_shared.hpp>
#include <boost/assign/list_of.hpp>

namespace QuantLib {

namespace detail {

class SABRWrapper {
  public:
    SABRWrapper(const Time t, const Real &forward,
                const std::vector<Real> &params,
                const std::vector<Real> &addParams)
        : t_(t), forward_(forward), params_(params),
          shift_(addParams.size() == 0 ? 0.0 : addParams[0]) {
        QL_REQUIRE(forward_ + shift_ > 0.0, "forward+shift must be positive: "
                                                 << forward_ << " with shift "
                                                 << shift_ << " not allowed");
        validateSabrParameters(params[0], params[1], params[2], params[3]);
    }
    Real volatility(const Real x) {
        return shiftedSabrVolatility(x, forward_, t_, params_[0], params_[1],
                                     params_[2], params_[3], shift_);
    }

  private:
    const Real t_, &forward_;
    const std::vector<Real> &params_;
    const Real shift_;
};

struct SABRSpecs {
    Size dimension() { return 4; }
    void defaultValues(std::vector<Real> &params, std::vector<bool> &,
                       const Real &forward, const Real expiryTIme,
                       const std::vector<Real> &addParams) {
        if (params[1] == Null<Real>())
            params[1] = 0.5;
        if (params[0] == Null<Real>())
            // adapt alpha to beta level
            params[0] = 0.2 * (params[1] < 0.9999
                                   ? std::pow(forward + (addParams.size() == 0
                                                             ? 0.0
                                                             : addParams[0]),
                                              1.0 - params[1])
                                   : 1.0);
        if (params[2] == Null<Real>())
            params[2] = std::sqrt(0.4);
        if (params[3] == Null<Real>())
            params[3] = 0.0;
    }
    void guess(Array &values, const std::vector<bool> &paramIsFixed,
               const Real &forward, const Real expiryTime,
               const std::vector<Real> &r, const std::vector<Real> &addParams) {
        Size j = 0;
        if (!paramIsFixed[1])
            values[1] = (1.0 - 2E-6) * r[j++] + 1E-6;
        if (!paramIsFixed[0]) {
            values[0] = (1.0 - 2E-6) * r[j++] + 1E-6; // lognormal vol guess
            // adapt this to beta level
            if (values[1] < 0.999)
                values[0] *= std::pow(
                    forward + (addParams.size() == 0 ? 0.0 : addParams[0]),
                    1.0 - values[1]);
        }
        if (!paramIsFixed[2])
            values[2] = 1.5 * r[j++] + 1E-6;
        if (!paramIsFixed[3])
            values[3] = (2.0 * r[j++] - 1.0) * (1.0 - 1E-6);
    }
    Real eps1() { return .0000001; }
    Real eps2() { return .9999; }
    Real dilationFactor() { return 0.001; }
    Array inverse(const Array &y, const std::vector<bool> &,
                  const std::vector<Real> &, const Real) {
        Array x(4);
        x[0] = y[0] < 25.0 + eps1() ? std::sqrt(y[0] - eps1())
                                    : (y[0] - eps1() + 25.0) / 10.0;
        // y_[1] = std::tan(M_PI*(x[1] - 0.5))/dilationFactor();
        x[1] = std::sqrt(-std::log(y[1]));
        x[2] = y[2] < 25.0 + eps1() ? std::sqrt(y[2] - eps1())
                                    : (y[2] - eps1() + 25.0) / 10.0;
        x[3] = std::asin(y[3] / eps2());
        return x;
    }
    Array direct(const Array &x, const std::vector<bool> &,
                 const std::vector<Real> &, const Real) {
        Array y(4);
        y[0] = std::fabs(x[0]) < 5.0 ? x[0] * x[0] + eps1()
                                     : (10.0 * std::fabs(x[0]) - 25.0) + eps1();
        // y_[1] = std::atan(dilationFactor_*x[1])/M_PI + 0.5;
        y[1] = std::fabs(x[1]) < std::sqrt(-std::log(eps1()))
                   ? std::exp(-(x[1] * x[1]))
                   : eps1();
        y[2] = std::fabs(x[2]) < 5.0 ? x[2] * x[2] + eps1()
                                     : (10.0 * std::fabs(x[2]) - 25.0) + eps1();
        y[3] = std::fabs(x[3]) < 2.5 * M_PI
                   ? eps2() * std::sin(x[3])
                   : eps2() * (x[3] > 0.0 ? 1.0 : (-1.0));
        return y;
    }
    Real weight(const Real strike, const Real forward, const Real stdDev,
                const std::vector<Real> &addParams) {
        return blackFormulaStdDevDerivative(strike, forward, stdDev, 1.0,
                                            addParams[0]);
    }
    typedef SABRWrapper type;
    boost::shared_ptr<type> instance(const Time t, const Real &forward,
                                     const std::vector<Real> &params,
                                     const std::vector<Real> &addParams) {
        return boost::make_shared<type>(t, forward, params, addParams);
    }
};
}

//! %SABR smile interpolation between discrete volatility points.
/*! \ingroup interpolations */
class SABRInterpolation : public Interpolation {
  public:
    template <class I1, class I2>
    SABRInterpolation(const I1 &xBegin, // x = strikes
                      const I1 &xEnd,
                      const I2 &yBegin, // y = volatilities
                      Time t,           // option expiry
                      const Real &forward, Real alpha, Real beta, Real nu,
                      Real rho, bool alphaIsFixed, bool betaIsFixed,
                      bool nuIsFixed, bool rhoIsFixed, bool vegaWeighted = true,
                      const boost::shared_ptr<EndCriteria> &endCriteria =
                          boost::shared_ptr<EndCriteria>(),
                      const boost::shared_ptr<OptimizationMethod> &optMethod =
                          boost::shared_ptr<OptimizationMethod>(),
                      const Real errorAccept = 0.0020,
                      const bool useMaxError = false,
                      const Size maxGuesses = 50, const Real shift = 0.0) {

        impl_ = boost::shared_ptr<Interpolation::Impl>(
            new detail::XABRInterpolationImpl<I1, I2, detail::SABRSpecs>(
                xBegin, xEnd, yBegin, t, forward,
                boost::assign::list_of(alpha)(beta)(nu)(rho),
                boost::assign::list_of(alphaIsFixed)(betaIsFixed)(nuIsFixed)(
                    rhoIsFixed),
                vegaWeighted, endCriteria, optMethod, errorAccept, useMaxError,
                maxGuesses, boost::assign::list_of(shift)));
        coeffs_ = boost::dynamic_pointer_cast<
            detail::XABRCoeffHolder<detail::SABRSpecs> >(impl_);
    }
    Real expiry() const { return coeffs_->t_; }
    Real forward() const { return coeffs_->forward_; }
    Real alpha() const { return coeffs_->params_[0]; }
    Real beta() const { return coeffs_->params_[1]; }
    Real nu() const { return coeffs_->params_[2]; }
    Real rho() const { return coeffs_->params_[3]; }
    Real rmsError() const { return coeffs_->error_; }
    Real maxError() const { return coeffs_->maxError_; }
    const std::vector<Real> &interpolationWeights() const {
        return coeffs_->weights_;
    }
    EndCriteria::Type endCriteria() { return coeffs_->XABREndCriteria_; }

  private:
    boost::shared_ptr<detail::XABRCoeffHolder<detail::SABRSpecs> > coeffs_;
};

//! %SABR interpolation factory and traits
/*! \ingroup interpolations */
class SABR {
  public:
    SABR(Time t, Real forward, Real alpha, Real beta, Real nu, Real rho,
         bool alphaIsFixed, bool betaIsFixed, bool nuIsFixed, bool rhoIsFixed,
         bool vegaWeighted = false,
         const boost::shared_ptr<EndCriteria> endCriteria =
             boost::shared_ptr<EndCriteria>(),
         const boost::shared_ptr<OptimizationMethod> optMethod =
             boost::shared_ptr<OptimizationMethod>(),
         const Real errorAccept = 0.0020, const bool useMaxError = false,
         const Size maxGuesses = 50, const Real shift = 0.0)
        : t_(t), forward_(forward), alpha_(alpha), beta_(beta), nu_(nu),
          rho_(rho), alphaIsFixed_(alphaIsFixed), betaIsFixed_(betaIsFixed),
          nuIsFixed_(nuIsFixed), rhoIsFixed_(rhoIsFixed),
          vegaWeighted_(vegaWeighted), endCriteria_(endCriteria),
          optMethod_(optMethod), errorAccept_(errorAccept),
          useMaxError_(useMaxError), maxGuesses_(maxGuesses), shift_(shift) {}
    template <class I1, class I2>
    Interpolation interpolate(const I1 &xBegin, const I1 &xEnd,
                              const I2 &yBegin) const {
        return SABRInterpolation(xBegin, xEnd, yBegin, t_, forward_, alpha_,
                                 beta_, nu_, rho_, alphaIsFixed_, betaIsFixed_,
                                 nuIsFixed_, rhoIsFixed_, vegaWeighted_,
                                 endCriteria_, optMethod_, errorAccept_,
                                 useMaxError_, maxGuesses_, shift_);
    }
    static const bool global = true;

  private:
    Time t_;
    Real forward_;
    Real alpha_, beta_, nu_, rho_;
    bool alphaIsFixed_, betaIsFixed_, nuIsFixed_, rhoIsFixed_;
    bool vegaWeighted_;
    const boost::shared_ptr<EndCriteria> endCriteria_;
    const boost::shared_ptr<OptimizationMethod> optMethod_;
    const Real errorAccept_;
    const bool useMaxError_;
    const Size maxGuesses_;
    const Real shift_;
};
}

#endif