/usr/include/ql/math/linearleastsquaresregression.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Dirk Eddelbuettel
Copyright (C) 2006, 2009, 2010 Klaus Spanderen
Copyright (C) 2010 Kakhkhor Abdijalilov
Copyright (C) 2010 Slava Mazur
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file linearleastsquaresregression.hpp
\brief general linear least square regression
*/
#ifndef quantlib_linear_least_squares_regression_hpp
#define quantlib_linear_least_squares_regression_hpp
#include <ql/math/generallinearleastsquares.hpp>
namespace QuantLib {
namespace details {
template <class Container>
class LinearFct : public std::unary_function<Real, Container > {
public:
LinearFct(Size i) : i_(i) {}
inline Real operator()(const Container& x) const {
return x[i_];
}
private:
const Size i_;
};
// 1d implementation (arithmetic types)
template <class xContainer, bool>
class LinearFcts {
public:
typedef typename xContainer::value_type ArgumentType;
LinearFcts (const xContainer &x, Real intercept) {
if (intercept != 0.0)
v.push_back(constant<ArgumentType, Real>(intercept));
v.push_back(identity<ArgumentType>());
}
const std::vector< boost::function1<Real, ArgumentType> > & fcts() {
return v;
}
private:
std::vector< boost::function1<Real, ArgumentType> > v;
};
// multi-dimensional implementation (container types)
template <class xContainer>
class LinearFcts<xContainer, false> {
public:
typedef typename xContainer::value_type ArgumentType;
LinearFcts (const xContainer &x, Real intercept) {
if (intercept != 0.0)
v.push_back(constant<ArgumentType, Real>(intercept));
Size m = x.begin()->size();
for (Size i = 0; i < m; ++i)
v.push_back(LinearFct<ArgumentType>(i));
}
const std::vector< boost::function1<Real, ArgumentType> > & fcts() {
return v;
}
private:
std::vector< boost::function1<Real, ArgumentType> > v;
};
}
class LinearRegression : public GeneralLinearLeastSquares {
public:
//! linear regression y_i = a_0 + a_1*x_0 +..+a_n*x_{n-1} + eps
template <class xContainer, class yContainer>
LinearRegression(const xContainer& x,
const yContainer& y, Real intercept = 1.0);
template <class xContainer, class yContainer, class vContainer>
LinearRegression(const xContainer& x,
const yContainer& y, const vContainer &v);
};
template <class xContainer, class yContainer> inline
LinearRegression::LinearRegression(const xContainer& x,
const yContainer& y, Real intercept)
: GeneralLinearLeastSquares(x, y,
details::LinearFcts<xContainer,
boost::is_arithmetic<typename xContainer::value_type>::value>
(x, intercept).fcts()) {
}
template <class xContainer, class yContainer, class vContainer> inline
LinearRegression::LinearRegression(const xContainer& x,
const yContainer& y,
const vContainer &v)
: GeneralLinearLeastSquares(x, y, v) {
}
// general linear least squares regression
// this interface is support for backward compatibility only
// please use GeneralLinearLeastSquares directly
template <class ArgumentType = Real>
class LinearLeastSquaresRegression : public GeneralLinearLeastSquares {
public:
LinearLeastSquaresRegression(
const std::vector<ArgumentType> & x,
const std::vector<Real> & y,
const std::vector<boost::function1<Real, ArgumentType> > & v)
: GeneralLinearLeastSquares(x, y, v) {
}
};
}
#endif
|