This file is indexed.

/usr/include/ql/math/randomnumbers/randomizedlds.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2004 Ferdinando Ametrano

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file randomizedlds.hpp
    \brief Randomized low-discrepancy sequence
*/

#ifndef quantlib_randomized_lds_hpp
#define quantlib_randomized_lds_hpp

#include <ql/math/randomnumbers/randomsequencegenerator.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>

namespace QuantLib {

    //! Randomized (random shift) low-discrepancy sequence
    /*! Random-shifts a uniform low-discrepancy sequence of dimension
        \f$ N \f$ by adding (modulo 1 for each coordinate) a pseudo-random
        uniform deviate in \f$ (0, 1)^N. \f$
        It is used for implementing Randomized Quasi Monte Carlo.

        The uniform low discrepancy sequence is supplied by LDS; the
        uniform pseudo-random sequence is supplied by PRS.

        Both class LDS and PRS must implement the following interface:
        \code
            LDS::sample_type LDS::nextSequence() const;
            Size LDS::dimension() const;
        \endcode

        \pre LDS and PRS must have the same dimension \f$ N \f$

        \warning Inverting LDS and PRS is possible, but it doesn't
                 make sense.

        \todo implement the other randomization algorithms

        \test correct initialization is tested.
    */
    template <class LDS,
              class PRS = RandomSequenceGenerator<MersenneTwisterUniformRng> >
    class RandomizedLDS {
      public:
        typedef Sample<std::vector<Real> > sample_type;
        RandomizedLDS(const LDS& ldsg,
                      const PRS& prsg);
        RandomizedLDS(const LDS& ldsg);
        RandomizedLDS(Size dimensionality,
                      BigNatural ldsSeed = 0,
                      BigNatural prsSeed = 0);
        //! returns next sample using a given randomizing vector
        const sample_type& nextSequence() const;
        const sample_type& lastSequence() const {
            return x;
        }
        /*! update the randomizing vector and re-initialize
            the low discrepancy generator */
        void nextRandomizer() {
            randomizer_ = prsg_.nextSequence();
            ldsg_ = pristineldsg_;
        }
        Size dimension() const {return dimension_;}
      private:
        mutable LDS ldsg_, pristineldsg_; // mutable because nextSequence is const
        PRS prsg_;
        Size dimension_;
        mutable sample_type x, randomizer_;
    };

    template <class LDS, class PRS>
    RandomizedLDS<LDS, PRS>::RandomizedLDS(const LDS& ldsg, const PRS& prsg)
    : ldsg_(ldsg), pristineldsg_(ldsg),
      prsg_(prsg), dimension_(ldsg_.dimension()),
      x(std::vector<Real> (dimension_), 1.0), randomizer_(std::vector<Real> (dimension_), 1.0) {

        QL_REQUIRE(prsg_.dimension()==dimension_,
                   "generator mismatch: "
                   << dimension_ << "-dim low discrepancy "
                   << "and " << prsg_.dimension() << "-dim pseudo random")

        randomizer_ = prsg_.nextSequence();

    }

    template <class LDS, class PRS>
    RandomizedLDS<LDS, PRS>::RandomizedLDS(const LDS& ldsg)
    : ldsg_(ldsg), pristineldsg_(ldsg),
      prsg_(ldsg_.dimension()), dimension_(ldsg_.dimension()),
      x(std::vector<Real> (dimension_), 1.0), randomizer_(std::vector<Real> (dimension_), 1.0) {

        randomizer_ = prsg_.nextSequence();

    }

    template <class LDS, class PRS>
    RandomizedLDS<LDS, PRS>::RandomizedLDS(Size dimensionality,
                                           BigNatural ldsSeed,
                                           BigNatural prsSeed)
    : ldsg_(dimensionality, ldsSeed), pristineldsg_(dimensionality, ldsSeed),
      prsg_(dimensionality, prsSeed), dimension_(dimensionality),
      x(std::vector<Real> (dimensionality), 1.0), randomizer_(std::vector<Real> (dimensionality), 1.0) {

        randomizer_ = prsg_.nextSequence();
    }

    template <class LDS, class PRS>
    inline const typename RandomizedLDS<LDS, PRS>::sample_type&
    RandomizedLDS<LDS, PRS>::nextSequence() const {
    typename LDS::sample_type sample =
        ldsg_.nextSequence();
    x.weight = randomizer_.weight * sample.weight;
    for (Size i = 0; i < dimension_; i++) {
        x.value[i] =  randomizer_.value[i] + sample.value[i];
        if (x.value[i]>1.0)
            x.value[i] -= 1.0;
    }
    return x;
    }

}


#endif