This file is indexed.

/usr/include/ql/methods/finitedifferences/trbdf2.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2011 Fabien Le Floc'h

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file trbdf2.hpp
    \brief TR-BDF2 scheme for finite difference methods
*/

#ifndef quantlib_trbdf2_hpp
#define quantlib_trbdf2_hpp

#include <ql/methods/finitedifferences/finitedifferencemodel.hpp>

namespace QuantLib {

    //! TR-BDF2 scheme for finite difference methods
    /*! See <http://ssrn.com/abstract=1648878> for details.

        In this implementation, the passed operator must be derived
        from either TimeConstantOperator or TimeDependentOperator.
        Also, it must implement at least the following interface:

        \code
        typedef ... array_type;

        // copy constructor/assignment
        // (these will be provided by the compiler if none is defined)
        Operator(const Operator&);
        Operator& operator=(const Operator&);

        // inspectors
        Size size();

        // modifiers
        void setTime(Time t);

        // operator interface
        array_type applyTo(const array_type&);
        array_type solveFor(const array_type&);
        static Operator identity(Size size);

        // operator algebra
        Operator operator*(Real, const Operator&);
        Operator operator+(const Operator&, const Operator&);
        Operator operator+(const Operator&, const Operator&);
        \endcode

        \warning The differential operator must be linear for
                 this evolver to work.

        \ingroup findiff
    */

    // NOTE: There is room for performance improvement especially in
    // the array manipulation

    template <class Operator>
    class TRBDF2  {
      public:
        // typedefs
        typedef OperatorTraits<Operator> traits;
        typedef typename traits::operator_type operator_type;
        typedef typename traits::array_type array_type;
        typedef typename traits::bc_set bc_set;
        typedef typename traits::condition_type condition_type;
        // constructors
        TRBDF2(const operator_type& L,
               const bc_set& bcs)
        : L_(L), I_(operator_type::identity(L.size())),
          dt_(0.0), bcs_(bcs), alpha_(2.0-sqrt(2.0)) {}
        void step(array_type& a,
                  Time t);
        void setStep(Time dt) {
            dt_ = dt;

            implicitPart_ = I_ + 0.5*alpha_*dt_*L_;
            explicitTrapezoidalPart_ = I_ - 0.5*alpha_*dt_*L_;
            explicitBDF2PartFull_ =
                -(1.0-alpha_)*(1.0-alpha_)/(alpha_*(2.0-alpha_))*I_;
            explicitBDF2PartMid_ = 1.0/(alpha_*(2.0-alpha_))*I_;
        }
      private:
        Real alpha_;
        operator_type L_, I_, explicitTrapezoidalPart_,
            explicitBDF2PartFull_,explicitBDF2PartMid_, implicitPart_;
        Time dt_;
        bc_set bcs_;
        array_type aInit_;
    };


    // inline definitions

    template <class Operator>
    inline void TRBDF2<Operator>::step(array_type& a, Time t) {
        Size i;
        Array aInit(a.size());
        for (i=0; i<a.size();i++) {
            aInit[i] = a[i];
        }
        aInit_ = aInit;
        for (i=0; i<bcs_.size(); i++)
            bcs_[i]->setTime(t);
        //trapezoidal explicit part
        if (L_.isTimeDependent()) {
            L_.setTime(t);
            explicitTrapezoidalPart_ = I_ - 0.5*alpha_*dt_*L_;
        }
        for (i=0; i<bcs_.size(); i++)
            bcs_[i]->applyBeforeApplying(explicitTrapezoidalPart_);
        a = explicitTrapezoidalPart_.applyTo(a);
        for (i=0; i<bcs_.size(); i++)
            bcs_[i]->applyAfterApplying(a);

        // trapezoidal implicit part
        if (L_.isTimeDependent()) {
            L_.setTime(t-dt_);
            implicitPart_ = I_ + 0.5*alpha_*dt_*L_;
        }
        for (i=0; i<bcs_.size(); i++)
            bcs_[i]->applyBeforeSolving(implicitPart_,a);
        a = implicitPart_.solveFor(a);
        for (i=0; i<bcs_.size(); i++)
            bcs_[i]->applyAfterSolving(a);


        // BDF2 explicit part
        if (L_.isTimeDependent()) {
            L_.setTime(t);
        }
        for (i=0; i<bcs_.size(); i++) {
            bcs_[i]->applyBeforeApplying(explicitBDF2PartFull_);
        }
        array_type b0 = explicitBDF2PartFull_.applyTo(aInit_);
        for (i=0; i<bcs_.size(); i++)
            bcs_[i]->applyAfterApplying(b0);

        for (i=0; i<bcs_.size(); i++) {
            bcs_[i]->applyBeforeApplying(explicitBDF2PartMid_);
        }
        array_type b1 = explicitBDF2PartMid_.applyTo(a);
        for (i=0; i<bcs_.size(); i++)
            bcs_[i]->applyAfterApplying(b1);
        a = b0+b1;

        // reuse implicit part - works only for alpha=2-sqrt(2)
        for (i=0; i<bcs_.size(); i++)
            bcs_[i]->applyBeforeSolving(implicitPart_,a);
        a = implicitPart_.solveFor(a);
        for (i=0; i<bcs_.size(); i++)
            bcs_[i]->applyAfterSolving(a);

    }

}

#endif