/usr/include/ql/methods/lattices/binomialtree.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file binomialtree.hpp
\brief Binomial tree class
*/
#ifndef quantlib_binomial_tree_hpp
#define quantlib_binomial_tree_hpp
#include <ql/methods/lattices/tree.hpp>
#include <ql/instruments/dividendschedule.hpp>
#include <ql/stochasticprocess.hpp>
namespace QuantLib {
//! Binomial tree base class
/*! \ingroup lattices */
template <class T>
class BinomialTree : public Tree<T> {
public:
enum Branches { branches = 2 };
BinomialTree(const boost::shared_ptr<StochasticProcess1D>& process,
Time end,
Size steps)
: Tree<T>(steps+1) {
x0_ = process->x0();
dt_ = end/steps;
driftPerStep_ = process->drift(0.0, x0_) * dt_;
}
Size size(Size i) const {
return i+1;
}
Size descendant(Size, Size index, Size branch) const {
return index + branch;
}
protected:
Real x0_, driftPerStep_;
Time dt_;
};
//! Base class for equal probabilities binomial tree
/*! \ingroup lattices */
template <class T>
class EqualProbabilitiesBinomialTree : public BinomialTree<T> {
public:
EqualProbabilitiesBinomialTree(
const boost::shared_ptr<StochasticProcess1D>& process,
Time end,
Size steps)
: BinomialTree<T>(process, end, steps) {}
Real underlying(Size i, Size index) const {
BigInteger j = 2*BigInteger(index) - BigInteger(i);
// exploiting the forward value tree centering
return this->x0_*std::exp(i*this->driftPerStep_ + j*this->up_);
}
Real probability(Size, Size, Size) const { return 0.5; }
protected:
Real up_;
};
//! Base class for equal jumps binomial tree
/*! \ingroup lattices */
template <class T>
class EqualJumpsBinomialTree : public BinomialTree<T> {
public:
EqualJumpsBinomialTree(
const boost::shared_ptr<StochasticProcess1D>& process,
Time end,
Size steps)
: BinomialTree<T>(process, end, steps) {}
Real underlying(Size i, Size index) const {
BigInteger j = 2*BigInteger(index) - BigInteger(i);
// exploiting equal jump and the x0_ tree centering
return this->x0_*std::exp(j*this->dx_);
}
Real probability(Size, Size, Size branch) const {
return (branch == 1 ? pu_ : pd_);
}
protected:
Real dx_, pu_, pd_;
};
//! Jarrow-Rudd (multiplicative) equal probabilities binomial tree
/*! \ingroup lattices */
class JarrowRudd : public EqualProbabilitiesBinomialTree<JarrowRudd> {
public:
JarrowRudd(const boost::shared_ptr<StochasticProcess1D>&,
Time end,
Size steps,
Real strike);
};
//! Cox-Ross-Rubinstein (multiplicative) equal jumps binomial tree
/*! \ingroup lattices */
class CoxRossRubinstein
: public EqualJumpsBinomialTree<CoxRossRubinstein> {
public:
CoxRossRubinstein(const boost::shared_ptr<StochasticProcess1D>&,
Time end,
Size steps,
Real strike);
};
//! Additive equal probabilities binomial tree
/*! \ingroup lattices */
class AdditiveEQPBinomialTree
: public EqualProbabilitiesBinomialTree<AdditiveEQPBinomialTree> {
public:
AdditiveEQPBinomialTree(
const boost::shared_ptr<StochasticProcess1D>&,
Time end,
Size steps,
Real strike);
};
//! %Trigeorgis (additive equal jumps) binomial tree
/*! \ingroup lattices */
class Trigeorgis : public EqualJumpsBinomialTree<Trigeorgis> {
public:
Trigeorgis(const boost::shared_ptr<StochasticProcess1D>&,
Time end,
Size steps,
Real strike);
};
//! %Tian tree: third moment matching, multiplicative approach
/*! \ingroup lattices */
class Tian : public BinomialTree<Tian> {
public:
Tian(const boost::shared_ptr<StochasticProcess1D>&,
Time end,
Size steps,
Real strike);
Real underlying(Size i, Size index) const {
return x0_ * std::pow(down_, Real(BigInteger(i)-BigInteger(index)))
* std::pow(up_, Real(index));
};
Real probability(Size, Size, Size branch) const {
return (branch == 1 ? pu_ : pd_);
}
protected:
Real up_, down_, pu_, pd_;
};
//! Leisen & Reimer tree: multiplicative approach
/*! \ingroup lattices */
class LeisenReimer : public BinomialTree<LeisenReimer> {
public:
LeisenReimer(const boost::shared_ptr<StochasticProcess1D>&,
Time end,
Size steps,
Real strike);
Real underlying(Size i, Size index) const {
return x0_ * std::pow(down_, Real(BigInteger(i)-BigInteger(index)))
* std::pow(up_, Real(index));
}
Real probability(Size, Size, Size branch) const {
return (branch == 1 ? pu_ : pd_);
}
protected:
Real up_, down_, pu_, pd_;
};
class Joshi4 : public BinomialTree<Joshi4> {
public:
Joshi4(const boost::shared_ptr<StochasticProcess1D>&,
Time end,
Size steps,
Real strike);
Real underlying(Size i, Size index) const {
return x0_ * std::pow(down_, Real(BigInteger(i)-BigInteger(index)))
* std::pow(up_, Real(index));
}
Real probability(Size, Size, Size branch) const {
return (branch == 1 ? pu_ : pd_);
}
protected:
Real computeUpProb(Real k, Real dj) const;
Real up_, down_, pu_, pd_;
};
}
#endif
|