This file is indexed.

/usr/include/ql/methods/montecarlo/longstaffschwartzpathpricer.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Klaus Spanderen
 Copyright (C) 2015 Peter Caspers
 Copyright (C) 2015 Thema Consulting SA

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file longstaffschwartzpathpricer.hpp
    \brief Longstaff-Schwarz path pricer for early exercise options
*/

#ifndef quantlib_longstaff_schwartz_path_pricer_hpp
#define quantlib_longstaff_schwartz_path_pricer_hpp

#include <ql/termstructures/yieldtermstructure.hpp>
#include <ql/math/functional.hpp>
#include <ql/math/generallinearleastsquares.hpp>
#include <ql/math/statistics/generalstatistics.hpp>
#include <ql/methods/montecarlo/pathpricer.hpp>
#include <ql/methods/montecarlo/earlyexercisepathpricer.hpp>

#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif

#include <boost/bind.hpp>

#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic pop
#endif

#include <boost/function.hpp>

namespace QuantLib {

    //! Longstaff-Schwarz path pricer for early exercise options
    /*! References:

        Francis Longstaff, Eduardo Schwartz, 2001. Valuing American Options
        by Simulation: A Simple Least-Squares Approach, The Review of
        Financial Studies, Volume 14, No. 1, 113-147

        \ingroup mcarlo

        \test the correctness of the returned value is tested by
              reproducing results available in web/literature
    */
    template <class PathType>
    class LongstaffSchwartzPathPricer : public PathPricer<PathType> {
      public:
        typedef typename EarlyExerciseTraits<PathType>::StateType StateType;

        LongstaffSchwartzPathPricer(
            const TimeGrid& times,
            const boost::shared_ptr<EarlyExercisePathPricer<PathType> >& ,
            const boost::shared_ptr<YieldTermStructure>& termStructure);

        Real operator()(const PathType& path) const;
        virtual void calibrate();

        Real exerciseProbability() const;

      protected:
        virtual void post_processing(const Size i,
                                     const std::vector<StateType> &state,
                                     const std::vector<Real> &price,
                                     const std::vector<Real> &exercise) {}
        bool  calibrationPhase_;
        const boost::shared_ptr<EarlyExercisePathPricer<PathType> >
            pathPricer_;

        mutable QuantLib::GeneralStatistics exerciseProbability_;

        boost::scoped_array<Array> coeff_;
        boost::scoped_array<DiscountFactor> dF_;

        mutable std::vector<PathType> paths_;
        const   std::vector<boost::function1<Real, StateType> > v_;

        const Size len_;
    };

    template <class PathType> inline
    LongstaffSchwartzPathPricer<PathType>::LongstaffSchwartzPathPricer(
        const TimeGrid& times,
        const boost::shared_ptr<EarlyExercisePathPricer<PathType> >&
            pathPricer,
        const boost::shared_ptr<YieldTermStructure>& termStructure)
    : calibrationPhase_(true),
      pathPricer_(pathPricer),
      coeff_     (new Array[times.size()-2]),
      dF_        (new DiscountFactor[times.size()-1]),
      v_         (pathPricer_->basisSystem()),
      len_       (times.size()) {

        for (Size i=0; i<times.size()-1; ++i) {
            dF_[i] =   termStructure->discount(times[i+1])
                     / termStructure->discount(times[i]);
        }
    }

    template <class PathType> inline
    Real LongstaffSchwartzPathPricer<PathType>::operator()
        (const PathType& path) const {
        if (calibrationPhase_) {
            // store paths for the calibration
            paths_.push_back(path);
            // result doesn't matter
            return 0.0;
        }

        Real price = (*pathPricer_)(path, len_-1);

        // Initialize with exercise on last date
        bool exercised = (price != 0.0);

        for (Size i=len_-2; i>0; --i) {
            price*=dF_[i];

            const Real exercise = (*pathPricer_)(path, i);
            if (exercise > 0.0) {
                const StateType regValue = pathPricer_->state(path, i);

                Real continuationValue = 0.0;
                for (Size l=0; l<v_.size(); ++l) {
                    continuationValue += coeff_[i-1][l] * v_[l](regValue);
                }

                if (continuationValue < exercise) {
                    price = exercise;

                    // Esercised
                    exercised = true;
                }
            }
        }

        exerciseProbability_.add(exercised ? 1.0 : 0.0);

        return price*dF_[0];
    }

    template <class PathType> inline
    void LongstaffSchwartzPathPricer<PathType>::calibrate() {
        const Size n = paths_.size();
        Array prices(n), exercise(n);
        std::vector<StateType> p_state(n);
        std::vector<Real> p_price(n), p_exercise(n);

        for (Size i=0; i<n; ++i) {
            p_state[i] = pathPricer_->state(paths_[i],len_-1);
            prices[i] = p_price[i] = (*pathPricer_)(paths_[i], len_-1);
            p_exercise[i] = prices[i];
        }

        post_processing(len_ - 1, p_state, p_price, p_exercise);

        std::vector<Real>      y;
        std::vector<StateType> x;
        for (Size i=len_-2; i>0; --i) {
            y.clear();
            x.clear();

            //roll back step
            for (Size j=0; j<n; ++j) {
                exercise[j]=(*pathPricer_)(paths_[j], i);
                if (exercise[j]>0.0) {
                    x.push_back(pathPricer_->state(paths_[j], i));
                    y.push_back(dF_[i]*prices[j]);
                }
            }

            if (v_.size() <=  x.size()) {
                coeff_[i-1] = GeneralLinearLeastSquares(x, y, v_).coefficients();
            }
            else {
            // if number of itm paths is smaller then the number of
            // calibration functions then early exercise if exerciseValue > 0
                coeff_[i-1] = Array(v_.size(), 0.0);
            }

            for (Size j=0, k=0; j<n; ++j) {
                prices[j]*=dF_[i];
                if (exercise[j]>0.0) {
                    Real continuationValue = 0.0;
                    for (Size l=0; l<v_.size(); ++l) {
                        continuationValue += coeff_[i-1][l] * v_[l](x[k]);
                    }
                    if (continuationValue < exercise[j]) {
                        prices[j] = exercise[j];
                    }
                    ++k;
                }
                p_state[j] = pathPricer_->state(paths_[j],i);
                p_price[j] = prices[j];
                p_exercise[j] = exercise[j];
            }

            post_processing(i, p_state, p_price, p_exercise);
        }

        // remove calibration paths and release memory
        std::vector<PathType> empty;
        paths_.swap(empty);
        // entering the calculation phase
        calibrationPhase_ = false;
    }

    template <class PathType> inline
    Real LongstaffSchwartzPathPricer<PathType>::exerciseProbability() const {
        return exerciseProbability_.mean();
    }


}


#endif