/usr/include/ql/termstructures/inflation/inflationtraits.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Chris Kenyon
Copyright (C) 2007, 2008 StatPro Italia srl
Copyright (C) 2011 Ferdinando Ametrano
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file inflationtraits.hpp
\brief inflation bootstrap traits
*/
#ifndef ql_inflation_bootstrap_traits_hpp
#define ql_inflation_bootstrap_traits_hpp
#include <ql/termstructures/inflation/interpolatedzeroinflationcurve.hpp>
#include <ql/termstructures/inflation/interpolatedyoyinflationcurve.hpp>
#include <ql/termstructures/bootstraphelper.hpp>
namespace QuantLib {
namespace detail {
const Rate avgInflation = 0.02;
const Rate maxInflation = 0.5;
}
//! Bootstrap traits to use for PiecewiseZeroInflationCurve
class ZeroInflationTraits {
public:
typedef BootstrapHelper<ZeroInflationTermStructure> helper;
// start of curve data
static Date initialDate(const ZeroInflationTermStructure* t) {
if (t->indexIsInterpolated()) {
return t->referenceDate() - t->observationLag();
} else {
return inflationPeriod(t->referenceDate() - t->observationLag(),
t->frequency()).first;
}
}
// value at reference date
static Rate initialValue(const ZeroInflationTermStructure* t) {
return t->baseRate();
}
// guesses
template <class C>
static Rate guess(Size i,
const C* c,
bool validData,
Size) // firstAliveHelper
{
if (validData) // previous iteration value
return c->data()[i];
if (i==1) // first pillar
return detail::avgInflation;
// could/should extrapolate
return detail::avgInflation;
}
// constraints
template <class C>
static Rate minValueAfter(Size i,
const C* c,
bool validData,
Size) // firstAliveHelper
{
if (validData) {
Rate r = *(std::min_element(c->data().begin(), c->data().end()));
return r<0.0 ? r*2.0 : r/2.0;
}
return -detail::maxInflation;
}
template <class C>
static Rate maxValueAfter(Size i,
const C* c,
bool validData,
Size) // firstAliveHelper
{
if (validData) {
Rate r = *(std::max_element(c->data().begin(), c->data().end()));
return r<0.0 ? r/2.0 : r*2.0;
}
// no constraints.
// We choose as max a value very unlikely to be exceeded.
return detail::maxInflation;
}
// update with new guess
static void updateGuess(std::vector<Rate>& data,
Rate level,
Size i) {
data[i] = level;
}
// upper bound for convergence loop
// calibration is trivial, should be immediate
static Size maxIterations() { return 5; }
};
//! Bootstrap traits to use for PiecewiseZeroInflationCurve
class YoYInflationTraits {
public:
// helper class
typedef BootstrapHelper<YoYInflationTermStructure> helper;
// start of curve data
static Date initialDate(const YoYInflationTermStructure* t) {
if (t->indexIsInterpolated()) {
return t->referenceDate() - t->observationLag();
} else {
return inflationPeriod(t->referenceDate() - t->observationLag(),
t->frequency()).first;
}
}
// value at reference date
static Rate initialValue(const YoYInflationTermStructure* t) {
return t->baseRate();
}
// guesses
template <class C>
static Rate guess(Size i,
const C* c,
bool validData,
Size) // firstAliveHelper
{
if (validData) // previous iteration value
return c->data()[i];
if (i==1) // first pillar
return detail::avgInflation;
// could/should extrapolate
return detail::avgInflation;
}
// constraints
template <class C>
static Rate minValueAfter(Size i,
const C* c,
bool validData,
Size) // firstAliveHelper
{
if (validData) {
Rate r = *(std::min_element(c->data().begin(), c->data().end()));
return r<0.0 ? r*2.0 : r/2.0;
}
return -detail::maxInflation;
}
template <class C>
static Rate maxValueAfter(Size i,
const C* c,
bool validData,
Size) // firstAliveHelper
{
if (validData) {
Rate r = *(std::max_element(c->data().begin(), c->data().end()));
return r<0.0 ? r/2.0 : r*2.0;
}
// no constraints.
// We choose as max a value very unlikely to be exceeded.
return detail::maxInflation;
}
// update with new guess
static void updateGuess(std::vector<Rate>& data,
Rate level,
Size i) {
data[i] = level;
}
// upper bound for convergence loop
static Size maxIterations() { return 40; }
};
}
#endif
|