This file is indexed.

/usr/include/ql/termstructures/localbootstrap.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Simon Ibbotson

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file localbootstrap.hpp
    \brief localised-term-structure bootstrapper for most curve types.
*/

#ifndef quantlib_local_bootstrap_hpp
#define quantlib_local_bootstrap_hpp

#include <ql/termstructures/bootstraphelper.hpp>
#include <ql/math/optimization/costfunction.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/optimization/armijo.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/math/optimization/problem.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <boost/shared_ptr.hpp>

namespace QuantLib {

    // penalty function class for solving using a multi-dimensional solver
    template <class Curve>
    class PenaltyFunction : public CostFunction {
        typedef typename Curve::traits_type Traits;
        typedef typename Traits::helper helper;
        typedef
          typename std::vector< boost::shared_ptr<helper> >::const_iterator
                                                              helper_iterator;
      public:
        PenaltyFunction(Curve* curve,
                        Size initialIndex,
                        helper_iterator rateHelpersStart,
                        helper_iterator rateHelpersEnd)
        : curve_(curve), initialIndex_(initialIndex),
          rateHelpersStart_(rateHelpersStart), rateHelpersEnd_(rateHelpersEnd) {
            localisation_ = std::distance(rateHelpersStart, rateHelpersEnd);
        }

        Real value(const Array& x) const;
        Disposable<Array> values(const Array& x) const;

      private:
        Curve* curve_;
        Size initialIndex_;
        Size localisation_;
        helper_iterator rateHelpersStart_;
        helper_iterator rateHelpersEnd_;
    };


    //! Localised-term-structure bootstrapper for most curve types.
    /*! This algorithm enables a localised fitting for non-local
        interpolation methods.

        As in the similar class (IterativeBootstrap) the input term
        structure is solved on a number of market instruments which
        are passed as a vector of handles to BootstrapHelper
        instances. Their maturities mark the boundaries of the
        interpolated segments.

        Unlike the IterativeBootstrap class, the solution for each
        interpolated segment is derived using a local
        approximation. This restricts the risk profile s.t.  the risk
        is localised. Therefore, we obtain a local IR risk profile
        whilst using a smoother interpolation method. Particularly
        good for the convex-monotone spline method.
    */
    template <class Curve>
    class LocalBootstrap {
        typedef typename Curve::traits_type Traits;
        typedef typename Curve::interpolator_type Interpolator;
      public:
        LocalBootstrap(Size localisation = 2,
                       bool forcePositive = true);
        void setup(Curve* ts);
        void calculate() const;

      private:
        mutable bool validCurve_;
        Curve* ts_;
        Size localisation_;
        bool forcePositive_;
    };



    // template definitions

    template <class Curve>
    LocalBootstrap<Curve>::LocalBootstrap(Size localisation,
                                          bool forcePositive)
    : validCurve_(false), ts_(0), localisation_(localisation),
      forcePositive_(forcePositive)
    {}

    template <class Curve>
    void LocalBootstrap<Curve>::setup(Curve* ts) {

        ts_ = ts;

        Size n = ts_->instruments_.size();
        QL_REQUIRE(n >= Interpolator::requiredPoints,
                   "not enough instruments: " << n << " provided, " <<
                   Interpolator::requiredPoints << " required");

        QL_REQUIRE(n > localisation_,
                   "not enough instruments: " << n << " provided, " <<
                   localisation_ << " required.");

        for (Size i=0; i<n; ++i){
            ts_->registerWith(ts_->instruments_[i]);
        }
    }

    template <class Curve>
    void LocalBootstrap<Curve>::calculate() const {

        validCurve_ = false;
        Size nInsts = ts_->instruments_.size();

        // ensure rate helpers are sorted
        std::sort(ts_->instruments_.begin(), ts_->instruments_.end(),
                  detail::BootstrapHelperSorter());

        // check that there is no instruments with the same maturity
        for (Size i=1; i<nInsts; ++i) {
            Date m1 = ts_->instruments_[i-1]->pillarDate(),
                 m2 = ts_->instruments_[i]->pillarDate();
            QL_REQUIRE(m1 != m2,
                       "two instruments have the same pillar date ("<<m1<<")");
        }

        // check that there is no instruments with invalid quote
        for (Size i=0; i<nInsts; ++i)
            QL_REQUIRE(ts_->instruments_[i]->quote()->isValid(),
                       io::ordinal(i+1) << " instrument (maturity: " <<
                       ts_->instruments_[i]->maturityDate() << ", pillar: " <<
                       ts_->instruments_[i]->pillarDate() <<
                       ") has an invalid quote");

        // setup instruments
        for (Size i=0; i<nInsts; ++i) {
            // don't try this at home!
            // This call creates instruments, and removes "const".
            // There is a significant interaction with observability.
            ts_->instruments_[i]->setTermStructure(const_cast<Curve*>(ts_));
        }
        // set initial guess only if the current curve cannot be used as guess
        if (validCurve_)
            QL_ENSURE(ts_->data_.size() == nInsts+1,
                      "dimension mismatch: expected " << nInsts+1 <<
                      ", actual " << ts_->data_.size());
        else {
            ts_->data_ = std::vector<Rate>(nInsts+1);
            ts_->data_[0] = Traits::initialValue(ts_);
        }

        // calculate dates and times
        ts_->dates_ = std::vector<Date>(nInsts+1);
        ts_->times_ = std::vector<Time>(nInsts+1);
        ts_->dates_[0] = Traits::initialDate(ts_);
        ts_->times_[0] = ts_->timeFromReference(ts_->dates_[0]);
        for (Size i=0; i<nInsts; ++i) {
            ts_->dates_[i+1] = ts_->instruments_[i]->pillarDate();
            ts_->times_[i+1] = ts_->timeFromReference(ts_->dates_[i+1]);
            if (!validCurve_)
                ts_->data_[i+1] = ts_->data_[i];
        }

        LevenbergMarquardt solver(ts_->accuracy_,
                                  ts_->accuracy_,
                                  ts_->accuracy_);
        EndCriteria endCriteria(100, 10, 0.00, ts_->accuracy_, 0.00);
        PositiveConstraint posConstraint;
        NoConstraint noConstraint;
        Constraint& solverConstraint = forcePositive_ ?
            static_cast<Constraint&>(posConstraint) :
            static_cast<Constraint&>(noConstraint);

        // now start the bootstrapping.
        Size iInst = localisation_-1;

        Size dataAdjust = Curve::interpolator_type::dataSizeAdjustment;

        do {
            Size initialDataPt = iInst+1-localisation_+dataAdjust;
            Array startArray(localisation_+1-dataAdjust);
            for (Size j = 0; j < startArray.size()-1; ++j)
                startArray[j] = ts_->data_[initialDataPt+j];

            // here we are extending the interpolation a point at a
            // time... but the local interpolator can make an
            // approximation for the final localisation period.
            // e.g. if the localisation is 2, then the first section
            // of the curve will be solved using the first 2
            // instruments... with the local interpolator making
            // suitable boundary conditions.
            ts_->interpolation_ =
                ts_->interpolator_.localInterpolate(
                                              ts_->times_.begin(),
                                              ts_->times_.begin()+(iInst + 2),
                                              ts_->data_.begin(),
                                              localisation_,
                                              ts_->interpolation_,
                                              nInsts+1);

            if (iInst >= localisation_) {
                startArray[localisation_-dataAdjust] =
                    Traits::guess(iInst, ts_, false, 0); // ?
            } else {
                startArray[localisation_-dataAdjust] = ts_->data_[0];
            }

            PenaltyFunction<Curve> currentCost(
                        ts_,
                        initialDataPt,
                        ts_->instruments_.begin() + ((iInst+1) - localisation_),
                        ts_->instruments_.begin() + (iInst+1));

            Problem toSolve(currentCost, solverConstraint, startArray);

            EndCriteria::Type endType = solver.minimize(toSolve, endCriteria);

            // check the end criteria
            QL_REQUIRE(endType == EndCriteria::StationaryFunctionAccuracy ||
                       endType == EndCriteria::StationaryFunctionValue,
                       "Unable to strip yieldcurve to required accuracy " );
            ++iInst;
        } while ( iInst < nInsts );
        validCurve_ = true;
    }


    template <class Curve>
    Real PenaltyFunction<Curve>::value(const Array& x) const {
        Size i = initialIndex_;
        Array::const_iterator guessIt = x.begin();
        while (guessIt != x.end()) {
            Traits::updateGuess(curve_->data_, *guessIt, i);
            ++guessIt;
            ++i;
        }

        curve_->interpolation_.update();

        Real penalty = 0.0;
        helper_iterator instIt = rateHelpersStart_;
        while (instIt != rateHelpersEnd_) {
            Real quoteError = (*instIt)->quoteError();
            penalty += std::fabs(quoteError);
            ++instIt;
        }
        return penalty;
    }

    template <class Curve>
    Disposable<Array> PenaltyFunction<Curve>::values(const Array& x) const {
        Array::const_iterator guessIt = x.begin();
        Size i = initialIndex_;
        while (guessIt != x.end()) {
            Traits::updateGuess(curve_->data_, *guessIt, i);
            ++guessIt;
            ++i;
        }

        curve_->interpolation_.update();

        Array penalties(localisation_);
        helper_iterator instIt = rateHelpersStart_;
        Array::iterator penIt = penalties.begin();
        while (instIt != rateHelpersEnd_) {
            Real quoteError = (*instIt)->quoteError();
            *penIt = std::fabs(quoteError);
            ++instIt;
            ++penIt;
        }
        return penalties;
    }

}

#endif