This file is indexed.

/usr/include/raul/TableImpl.hpp is in libraul-dev 0.8.0+dfsg0-0.1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/* This file is part of Raul.
 * Copyright (C) 2007-2009 David Robillard <http://drobilla.net>
 *
 * Raul is free software; you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any later
 * version.
 *
 * Raul is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 */

#ifndef RAUL_TABLE_IMPL_HPP
#define RAUL_TABLE_IMPL_HPP

#include <algorithm>
#include <cassert>
#include <iostream>
#include <stdexcept>
#include <utility>
#include <vector>

#include "raul/Table.hpp"

namespace Raul {

/* FIXME: This could be a lot less code... */

#ifdef TABLE_SORT_DEBUG
template <typename K, typename T>
bool
Table<K,T>::is_sorted() const
{
	if (size() <= 1)
		return true;

	K prev_key = _entries[0].first;

	for (size_t i=1; i < size(); ++i)
		if (_entries[i].first < prev_key)
			return false;
		else
			prev_key = _entries[i].first;

	return true;
}
#endif


/** Binary search (O(log(n))) */
template <typename K, typename T>
typename Table<K,T>::const_iterator
Table<K,T>::find(const K& key) const
{
	return ((Table<K,T>*)this)->find(key);
}


/** Binary search (O(log(n))) */
template <typename K, typename T>
typename Table<K,T>::iterator
Table<K,T>::find(const K& key)
{
	return find(begin(), end(), key);
}


/** Binary search (O(log(end - start))) */
template <typename K, typename T>
typename Table<K,T>::const_iterator
Table<K,T>::find(const_iterator start, const_iterator finish, const K& key) const
{
	return ((Table<K,T>*)this)->find(start, finish, key);
}


/** Binary search (O(log(end - start))) */
template <typename K, typename T>
typename Table<K,T>::iterator
Table<K,T>::find(const_iterator start, const_iterator finish, const K& key)
{
	if (size() == 0)
		return end();

	size_t lower = start._index;
	size_t upper = finish._index - 1;
	size_t i;

	while (upper >= lower) {
		i = lower + ((upper - lower) / 2);
		const Entry& elem = _entries[i];

		if (elem.first == key)
			return iterator(*this, i);
		else if (i < size()-1 && elem.first < key)
			lower = i + 1;
		else if (i > 0)
			upper = i - 1;
		else
			break;
	}

	return end();
}


/** Find the end of a range using a custom comparator.
 * Two entries a, b are considered in the range if comp(a, b) returns true.
 *
 * Returns an iterator exactly one entry past the end of the range (possibly end()).
 *
 * WARNING: The restrictions on \a comparator are very strict:  ALL items
 * considered equal by \a comparator must be stored in the Table consecutively
 * i.e. there are no 3 values a, b, c S.T. comp(a) && ! comp(b) && comp(c).
 *
 * This is useful for very quickly finding all children of a Path, which
 * obey the above rule with lexicographical order.
 */
template <typename K, typename T>
typename Table<K,T>::const_iterator
Table<K,T>::find_range_end(const_iterator start, bool (*comp)(const K&,const K&)) const
{
	return (const_cast<Table<K, T>&>(*this)).find_range_end(*((iterator*)&start), comp);
}


/** Find the end of a range using a custom comparator.
 * Two entries a, b are considered in the range if comp(a, b) returns true.
 *
 * Returns an iterator exactly one entry past the end of the range (possibly end()).
 *
 * WARNING: The restrictions on \a comparator are very strict:  ALL items
 * considered equal by \a comparator must be stored in the Table consecutively
 * i.e. there are no 3 values a, b, c S.T. comp(a) && ! comp(b) && comp(c).
 *
 * This is useful for very quickly finding all children of a Path, which
 * obey the above rule with lexicographical order.
 */
template <typename K, typename T>
typename Table<K,T>::iterator
Table<K,T>::find_range_end(iterator start, bool (*comp)(const K&,const K&))
{
	if (size() == 0 || start == end())
		return this->end();

	const K& key = start->first;

	size_t lower = start._index;
	size_t upper = size() - 1;

	if (lower == upper) {
		if (comp(key, _entries[lower].first))
			return iterator(*this, lower+1);
		else
			return this->end();
	}

	size_t i;

	while (upper > lower) {

		i = lower + ((upper - lower) / 2);

		if (upper - lower == 1) {
			if (comp(key, _entries[upper].first) && upper < size())
				return iterator(*this, upper+1);
			else if (lower < size())
				return iterator(*this, lower+1);
		}

		const Entry& elem = _entries[i];

		// Hit
		if (comp(key, elem.first)) {

			if (i == size()-1 || !comp(key, _entries[i+1].first))
				return iterator(*this, i+1);
			else
				lower = i;

		// Miss
		} else {

			upper = i;

		}
	}

	assert(comp(start->first, _entries[lower].first));
	assert(lower == size()-1 || !comp(start->first, _entries[lower+1].first));

	return iterator(*this, lower+1);
}


/** Erase and return a range of entries */
template <typename K, typename T>
SharedPtr< Table<K, T> >
Table<K, T>::yank(iterator start, iterator end)
{
	SharedPtr< Table<K, T> > ret(new Table<K, T>(end._index - start._index));
	for (size_t i=start._index; i < end._index; ++i)
		ret->_entries.at(i - start._index) = _entries[i];
	erase(start, end);
	return ret;
}


/** Cram a range of entries back in.
 * Range MUST follow the same ordering guidelines as find_range_end.
 * Return type is the same as insert, iterator points to first inserted entry */
template <typename K, typename T>
std::pair<typename Table<K,T>::iterator, bool>
Table<K, T>::cram(const Table<K,T>& range)
{
	/* FIXME: _way_ too slow */

	const size_t orig_size = size();

	if (range.size() == 0)
		return std::make_pair(end(), false);

	std::pair<iterator, bool> ret = insert(range._entries.front());
	if (range.size() == 1)
		return ret;

	const size_t insert_index = ret.first._index;

	std::vector<Entry> new_entries(orig_size + range.size());

	for (size_t i=0; i <= insert_index; ++i)
		new_entries.at(i) = _entries.at(i);

	for (size_t i=0; i < size() - insert_index; ++i)
		new_entries.at(new_entries.size() - 1 - i) = _entries.at(size() - 1 - i);

	for (size_t i=1; i < range.size(); ++i)
		new_entries.at(insert_index + i) = range._entries.at(i);

	_entries = new_entries;

	assert(size() == orig_size + range.size());
#ifdef TABLE_SORT_DEBUG
	assert(is_sorted());
#endif

	return make_pair(iterator(*this, insert_index), true);
}


/** Add an item to the table, using \a entry.first as the search key.
 * An iterator to the element where value was set is returned, and a bool which
 * is true if an insertion took place, or false if an existing entry was updated.
 * Matches std::map::insert interface.
 * O(n) worst case
 * O(log(n)) best case (capacity is large enough)
 */
template <typename K, typename T>
std::pair<typename Table<K,T>::iterator, bool>
Table<K,T>::insert(const std::pair<K, T>& entry)
{
	const K& key = entry.first;
	const T& value = entry.second;

	if (size() == 0 || (size() == 1 && _entries[0].first < key)) {
		_entries.push_back(entry);
		return std::make_pair(iterator(*this, size()-1), true);
	} else if (size() == 1) {
		_entries.push_back(_entries[0]);
		_entries[0] = entry;
		return std::make_pair(begin(), true);
	}

	size_t lower = 0;
	size_t upper = size() - 1;
	size_t i;

	// Find the earliest element > key
	while (upper >= lower) {
		i = lower + ((upper - lower) / 2);
		assert(i >= lower);
		assert(i <= upper);
		assert(_entries[lower].first <= _entries[i].first);
		assert(_entries[i].first <= _entries[upper].first);

		assert(i < size());
		Entry& elem = _entries[i];

		if (elem.first == key) {
			elem.second = value;
			return std::make_pair(iterator(*this, i), false);
		} else if (key < elem.first) {
			if (i == 0 || _entries[i-1].first < key)
				break;
			upper = i - 1;
		} else {
			lower = i + 1;
		}
	}

	// Lil' off by one touchup :)
	if (i < size() && _entries[i].first <= key)
		++i;

	_entries.push_back(_entries.back());

	// Shift everything beyond i right
	for (size_t j = size()-2; j > i; --j)
		_entries[j] = _entries[j-1];

	_entries[i] = entry;

#ifdef TABLE_SORT_DEBUG
	assert(is_sorted());
#endif

	return std::make_pair(iterator(*this, i), true);
}


/** Insert an item, and return a reference to it's value.
 *
 * This may be used to insert values with pretty syntax:
 *
 * table["gorilla"] = "killa";
 *
 * T must have a default constructor for this to be possible.
 */
template <typename K, typename T>
T&
Table<K, T>::operator[](const K& key)
{
	iterator i = find(key);
	if (i != end()) {
		return i->second;
	} else {
		std::pair<iterator,bool> ret = insert(make_pair(key, T()));
		return ret.first->second;
	}
}


template <typename K, typename T>
void
Table<K,T>::erase(const K& key)
{
	erase(find(key));
}


template <typename K, typename T>
void
Table<K,T>::erase(iterator i)
{
	if (i == end())
		return;

	const size_t index = i._index;

	// Shift left
	for (size_t j=index; j < size()-1; ++j)
		_entries[j] = _entries[j+1];

	_entries.pop_back();

#ifdef TABLE_SORT_DEBUG
	assert(is_sorted());
#endif
}


/** Erase a range of elements from \a first to \a last, including first but
 * not including last.
 */
template <typename K, typename T>
void
Table<K,T>::erase(iterator first, iterator last)
{
	const size_t first_index = first._index;
	const size_t last_index = last._index;

	Table<K,T>::erase_by_index(first_index, last_index);
}


/** Erase a range of elements from \a first_index to \a last_index, including
 * first_index but not including last_index.
 */
template <typename K, typename T>
void
Table<K,T>::erase_by_index(size_t first_index, size_t last_index)
{
	const size_t num_removed = last_index - first_index;

	// Shift left
	for (size_t j=first_index; j < size() - num_removed; ++j)
		_entries[j] = _entries[j + num_removed];

	_entries.resize(size() - num_removed);

#ifdef TABLE_SORT_DEBUG
	assert(is_sorted());
#endif
}


} // namespace Raul

#endif // RAUL_TABLE_IMLP_HPP