/usr/include/rdkit/DataStructs/BitOps.h is in librdkit-dev 201503-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | //
// Copyright (C) 2003-2012 greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#ifndef __RD_BITOPS_H__
#define __RD_BITOPS_H__
/*! \file BitOps.h
\brief Contains general bit-comparison and similarity operations.
The notation used to document the similarity metrics is:
- \c V1_n: number of bits in vector 1
- \c V1_o: number of on bits in vector 1
- <tt>(V1&V2)_o</tt>: number of on bits in the intersection of vectors 1 and 2
*/
#include "BitVects.h"
#include <string>
//! general purpose wrapper for calculating the similarity between two bvs
//! that may be of unequal size (will automatically fold as appropriate)
template <typename T>
double SimilarityWrapper(const T &bv1,const T &bv2,
double (*metric)(const T &,const T &),
bool returnDistance=false){
double res=0.0;
if(bv1.getNumBits()>bv2.getNumBits()){
T *bv1tmp = FoldFingerprint(bv1,bv1.getNumBits()/bv2.getNumBits());
res = metric(*bv1tmp,bv2);
delete bv1tmp;
} else if(bv2.getNumBits()>bv1.getNumBits()){
T *bv2tmp = FoldFingerprint(bv2,bv2.getNumBits()/bv1.getNumBits());
res = metric(bv1,*bv2tmp);
delete bv2tmp;
} else {
res = metric(bv1,bv2);
}
if(returnDistance) res = 1.0-res;
return res;
}
//! \overload
template <typename T>
double SimilarityWrapper(const T &bv1,const T &bv2,double a,double b,
double (*metric)(const T &,const T &,double,double),
bool returnDistance=false){
double res=0.0;
if(bv1.getNumBits()>bv2.getNumBits()){
T *bv1tmp = FoldFingerprint(bv1,bv1.getNumBits()/bv2.getNumBits());
res = metric(*bv1tmp,bv2,a,b);
delete bv1tmp;
} else if(bv2.getNumBits()>bv1.getNumBits()){
T *bv2tmp = FoldFingerprint(bv2,bv2.getNumBits()/bv1.getNumBits());
res = metric(bv1,*bv2tmp,a,b);
delete bv2tmp;
} else {
res = metric(bv1,bv2,a,b);
}
if(returnDistance) res = 1.0-res;
return res;
}
bool AllProbeBitsMatch(const char *probe,const char *ref);
bool AllProbeBitsMatch(const std::string &probe,const std::string &ref);
bool AllProbeBitsMatch(const ExplicitBitVect& probe,const ExplicitBitVect &ref);
template <typename T1>
bool AllProbeBitsMatch(const T1 &probe,const std::string &pkl);
template <typename T1>
bool AllProbeBitsMatch(const T1 &probe,const T1 &ref);
//! returns the number of on bits in common between two bit vectors
/*!
\return (bv1&bv2)_o
*/
template <typename T1, typename T2>
int
NumOnBitsInCommon(const T1& bv1,const T2& bv2);
int
NumOnBitsInCommon(const ExplicitBitVect & bv1,const ExplicitBitVect & bv2);
//! returns the Tanimoto similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o / [bv1_o + bv2_o - (bv1&bv2)_o]</tt>
*/
template <typename T1, typename T2>
double
TanimotoSimilarity(const T1& bv1,const T2& bv2);
//! returns the Cosine similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o / sqrt(bv1_o + bv2_o)</tt>
*/
template <typename T1, typename T2>
double
CosineSimilarity(const T1& bv1,
const T2& bv2);
//! returns the Kulczynski similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o * [bv1_o + bv2_o] / [2 * bv1_o * bv2_o]</tt>
*/
template <typename T1, typename T2>
double
KulczynskiSimilarity(const T1& bv1,
const T2& bv2);
//! returns the Dice similarity between two bit vects
/*!
\return <tt>2*(bv1&bv2)_o / [bv1_o + bv2_o]</tt>
*/
template <typename T1, typename T2>
double
DiceSimilarity(const T1& bv1,
const T2& bv2);
//! returns the Tversky similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o / [a*bv1_o + b*bv2_o + (1 - a - b)*(bv1&bv2)_o]</tt>
Notes:
# 0 <= a,b <= 1
# Tversky(a=1,b=1) = Tanimoto
# Tversky(a=1/2,b=1/2) = Dice
*/
template <typename T1, typename T2>
double
TverskySimilarity(const T1& bv1,
const T2& bv2,double a,double b);
//! returns the Sokal similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o / [2*bv1_o + 2*bv2_o - 3*(bv1&bv2)_o]</tt>
*/
template <typename T1, typename T2>
double
SokalSimilarity(const T1& bv1,
const T2& bv2);
//! returns the McConnaughey similarity between two bit vects
/*!
\return <tt>[(bv1&bv2)_o * (bv1_o + bv2_o) - (bv1_o * bv2_o)] / (bv1_o * bv2_o)</tt>
*/
template <typename T1, typename T2>
double
McConnaugheySimilarity(const T1& bv1,
const T2& bv2);
//! returns the Asymmetric similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o / min(bv1_o,bv2_o)</tt>
*/
template <typename T1, typename T2>
double
AsymmetricSimilarity(const T1& bv1,
const T2& bv2);
//! returns the Braun-Blanquet similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o / max(bv1_o,bv2_o)</tt>
*/
template <typename T1, typename T2>
double
BraunBlanquetSimilarity(const T1& bv1,
const T2& bv2);
//! returns the Russel similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o / bv1_o</tt>
<b>Note:</b> that this operation is non-commutative:
RusselSimilarity(bv1,bv2) != RusselSimilarity(bv2,bv1)
*/
template <typename T1, typename T2>
double
RusselSimilarity(const T1& bv1,
const T2& bv2);
//! returns the Rogot-Goldberg similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o / (bv1_o + bv2_o)
+ (bv1_n - bv1_o - bv2_o + (bv1&bv2)_o) / (2*bv1_n - bv1_o - bv2_o) </tt>
*/
template <typename T1, typename T2>
double
RogotGoldbergSimilarity(const T1& bv1,const T2& bv2);
//! returns the on bit similarity between two bit vects
/*!
\return <tt>(bv1&bv2)_o / (bv1|bv2)_o </tt>
*/
template <typename T1, typename T2>
double
OnBitSimilarity(const T1& bv1,const T2& bv2);
//! returns the number of common bits (on and off) between two bit vects
/*!
\return <tt>bv1_n - (bv1^bv2)_o</tt>
*/
template <typename T1, typename T2>
int
NumBitsInCommon(const T1& bv1,const T2& bv2);
int
NumBitsInCommon(const ExplicitBitVect & bv1,const ExplicitBitVect & bv2);
//! returns the common-bit similarity (on and off) between two bit vects
//! This is also called Manhattan similarity.
/*!
\return <tt>[bv1_n - (bv1^bv2)_o] / bv1_n</tt>
*/
template <typename T1, typename T2>
double
AllBitSimilarity(const T1& bv1,const T2& bv2);
//! returns an IntVect with indices of all on bits in common between two bit vects
template <typename T1, typename T2>
IntVect
OnBitsInCommon(const T1& bv1,const T2& bv2);
//! returns an IntVect with indices of all off bits in common between two bit vects
template <typename T1, typename T2>
IntVect
OffBitsInCommon(const T1& bv1,const T2& bv2);
//! returns the on-bit projected similarities between two bit vects
/*!
\return two values, as a DoubleVect:
- <tt>(bv1&bv2)_o / bv1_o</tt>
- <tt>(bv1&bv2)_o / bv2_o</tt>
*/
template <typename T1, typename T2>
DoubleVect
OnBitProjSimilarity(const T1& bv1,const T2& bv2);
//! returns the on-bit projected similarities between two bit vects
/*!
\return two values, as a DoubleVect:
- <tt>[bv1_n - (bv1|bv2)_o] / [bv1_n - bv1_o]</tt>
- <tt>[bv2_n - (bv1|bv2)_o] / [bv2_n - bv2_o]</tt>
<b>Note:</b> <tt>bv1_n = bv2_n</tt>
*/
template <typename T1, typename T2>
DoubleVect
OffBitProjSimilarity(const T1& bv1,const T2& bv2);
//! folds a bit vector \c factor times and returns the result
/*!
\param bv1 the vector to be folded
\param factor (optional) the number of times to fold it
\return a pointer to the folded fingerprint, which is
<tt>bv1_n/factor</tt> long.
<b>Note:</b> The caller is responsible for <tt>delete</tt>ing the result.
*/
template <typename T1>
T1 *
FoldFingerprint(const T1& bv1,unsigned int factor=2);
//! returns a text representation of a bit vector (a string of 0s and 1s)
/*!
\param bv1 the vector to use
\return an std::string
*/
template <typename T1>
std::string
BitVectToText(const T1& bv1);
//! returns a hex representation of a bit vector compatible with Andrew Dalke's FPS format
/*!
\param bv1 the vector to use
\return an std::string
*/
template <typename T1>
std::string
BitVectToFPSText(const T1& bv1);
//! returns a binary string representation of a bit vector (an array of bytes)
/*!
\param bv1 the vector to use
\return an std::string
*/
template <typename T1>
std::string
BitVectToBinaryText(const T1& bv1);
//! updates a bit vector from Andrew Dalke's FPS format
/*!
\param bv1 the vector to use
\param fps the FPS hex string
*/
template <typename T1>
void
UpdateBitVectFromFPSText(T1& bv1,const std::string &fps);
//! updates a bit vector from a binary string representation of a bit vector (an array of bytes)
/*!
\param bv1 the vector to use
\param fps the binary string
*/
template <typename T1>
void
UpdateBitVectFromBinaryText(T1& bv1,const std::string &fps);
#endif
|