This file is indexed.

/usr/include/rdkit/DataStructs/BitOps.h is in librdkit-dev 201503-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
//
//  Copyright (C) 2003-2012 greg Landrum and Rational Discovery LLC
//
//  @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#ifndef __RD_BITOPS_H__
#define __RD_BITOPS_H__
/*! \file BitOps.h

  \brief Contains general bit-comparison and similarity operations.

  The notation used to document the similarity metrics is:
    - \c V1_n: number of bits in vector 1
    - \c V1_o: number of on bits in vector 1
    - <tt>(V1&V2)_o</tt>: number of on bits in the intersection of vectors 1 and 2
  
 */

#include "BitVects.h"
#include <string>


//! general purpose wrapper for calculating the similarity between two bvs
//! that may be of unequal size (will automatically fold as appropriate)
template <typename T>
double SimilarityWrapper(const T &bv1,const T &bv2,
                         double (*metric)(const T &,const T &),
                         bool returnDistance=false){
  double res=0.0;
  if(bv1.getNumBits()>bv2.getNumBits()){
    T *bv1tmp = FoldFingerprint(bv1,bv1.getNumBits()/bv2.getNumBits());
    res = metric(*bv1tmp,bv2);
    delete bv1tmp;
  } else if(bv2.getNumBits()>bv1.getNumBits()){
    T *bv2tmp = FoldFingerprint(bv2,bv2.getNumBits()/bv1.getNumBits());
    res = metric(bv1,*bv2tmp);
    delete bv2tmp;
  } else {
    res = metric(bv1,bv2);
  }
  if(returnDistance) res = 1.0-res;
  return res;
}
//! \overload
template <typename T>
double SimilarityWrapper(const T &bv1,const T &bv2,double a,double b,
                         double (*metric)(const T &,const T &,double,double),
                         bool returnDistance=false){
  double res=0.0;
  if(bv1.getNumBits()>bv2.getNumBits()){
    T *bv1tmp = FoldFingerprint(bv1,bv1.getNumBits()/bv2.getNumBits());
    res = metric(*bv1tmp,bv2,a,b);
    delete bv1tmp;
  } else if(bv2.getNumBits()>bv1.getNumBits()){
    T *bv2tmp = FoldFingerprint(bv2,bv2.getNumBits()/bv1.getNumBits());
    res = metric(bv1,*bv2tmp,a,b);
    delete bv2tmp;
  } else {
    res = metric(bv1,bv2,a,b);
  }
  if(returnDistance) res = 1.0-res;
  return res;
}


bool AllProbeBitsMatch(const char *probe,const char *ref);
bool AllProbeBitsMatch(const std::string &probe,const std::string &ref);
bool AllProbeBitsMatch(const ExplicitBitVect& probe,const ExplicitBitVect &ref);

  
template <typename T1>
bool AllProbeBitsMatch(const T1 &probe,const std::string &pkl);

template <typename T1>
bool AllProbeBitsMatch(const T1 &probe,const T1 &ref);


//! returns the number of on bits in common between two bit vectors
/*!
  \return (bv1&bv2)_o
*/
template <typename T1, typename T2>
int
NumOnBitsInCommon(const T1& bv1,const T2& bv2);

int
NumOnBitsInCommon(const ExplicitBitVect & bv1,const ExplicitBitVect & bv2);

//! returns the Tanimoto similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o / [bv1_o + bv2_o - (bv1&bv2)_o]</tt>
*/
template <typename T1, typename T2>
double
TanimotoSimilarity(const T1& bv1,const T2& bv2);

//! returns the Cosine similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o / sqrt(bv1_o + bv2_o)</tt>
*/
template <typename T1, typename T2>
double
CosineSimilarity(const T1& bv1,
                 const T2& bv2);

//! returns the Kulczynski similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o * [bv1_o + bv2_o] / [2 * bv1_o * bv2_o]</tt>
*/
template <typename T1, typename T2>
double
KulczynskiSimilarity(const T1& bv1,
                     const T2& bv2);

//! returns the Dice similarity between two bit vects
/*!
  \return <tt>2*(bv1&bv2)_o / [bv1_o + bv2_o]</tt>
*/
template <typename T1, typename T2>
double
DiceSimilarity(const T1& bv1,
               const T2& bv2);

//! returns the Tversky similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o / [a*bv1_o + b*bv2_o + (1 - a - b)*(bv1&bv2)_o]</tt>

  Notes:  
   # 0 <= a,b <= 1
   # Tversky(a=1,b=1) = Tanimoto
   # Tversky(a=1/2,b=1/2) = Dice
 
*/
template <typename T1, typename T2>
double
TverskySimilarity(const T1& bv1,
                  const T2& bv2,double a,double b);

//! returns the Sokal similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o / [2*bv1_o + 2*bv2_o - 3*(bv1&bv2)_o]</tt>
*/
template <typename T1, typename T2>
double
SokalSimilarity(const T1& bv1,
                const T2& bv2);

//! returns the McConnaughey similarity between two bit vects
/*!
  \return <tt>[(bv1&bv2)_o * (bv1_o + bv2_o) - (bv1_o * bv2_o)] / (bv1_o * bv2_o)</tt>
*/
template <typename T1, typename T2>
double
McConnaugheySimilarity(const T1& bv1,
                       const T2& bv2);

//! returns the Asymmetric similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o / min(bv1_o,bv2_o)</tt>
*/
template <typename T1, typename T2>
double
AsymmetricSimilarity(const T1& bv1,
                     const T2& bv2);

//! returns the Braun-Blanquet similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o / max(bv1_o,bv2_o)</tt>
*/
template <typename T1, typename T2>
double
BraunBlanquetSimilarity(const T1& bv1,
                        const T2& bv2);

//! returns the Russel similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o / bv1_o</tt>

  <b>Note:</b> that this operation is non-commutative:
    RusselSimilarity(bv1,bv2) != RusselSimilarity(bv2,bv1)

*/
template <typename T1, typename T2>
double
RusselSimilarity(const T1& bv1,
                 const T2& bv2);

//! returns the Rogot-Goldberg similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o / (bv1_o + bv2_o)
  + (bv1_n - bv1_o - bv2_o + (bv1&bv2)_o) / (2*bv1_n - bv1_o - bv2_o) </tt>
*/
template <typename T1, typename T2>
double
RogotGoldbergSimilarity(const T1& bv1,const T2& bv2);


//! returns the on bit similarity between two bit vects
/*!
  \return <tt>(bv1&bv2)_o / (bv1|bv2)_o </tt>
*/
template <typename T1, typename T2>
double
OnBitSimilarity(const T1& bv1,const T2& bv2);

//! returns the number of common bits (on and off) between two bit vects
/*!
  \return <tt>bv1_n - (bv1^bv2)_o</tt>
*/
template <typename T1, typename T2>
int
NumBitsInCommon(const T1& bv1,const T2& bv2);

int
NumBitsInCommon(const ExplicitBitVect & bv1,const ExplicitBitVect & bv2);

//! returns the common-bit similarity (on and off) between two bit vects
//! This is also called Manhattan similarity.
/*!
  \return <tt>[bv1_n - (bv1^bv2)_o] / bv1_n</tt>
*/
template <typename T1, typename T2>
double
AllBitSimilarity(const T1& bv1,const T2& bv2);

//! returns an IntVect with indices of all on bits in common between two bit vects
template <typename T1, typename T2>
IntVect
OnBitsInCommon(const T1& bv1,const T2& bv2);

//! returns an IntVect with indices of all off bits in common between two bit vects
template <typename T1, typename T2>
IntVect
OffBitsInCommon(const T1& bv1,const T2& bv2);

//! returns the on-bit projected similarities between two bit vects
/*!
  \return two values, as a DoubleVect:
      - <tt>(bv1&bv2)_o / bv1_o</tt> 
      - <tt>(bv1&bv2)_o / bv2_o</tt> 
*/
template <typename T1, typename T2>
DoubleVect
OnBitProjSimilarity(const T1& bv1,const T2& bv2);

//! returns the on-bit projected similarities between two bit vects
/*!
  \return two values, as a DoubleVect:
     - <tt>[bv1_n - (bv1|bv2)_o] / [bv1_n - bv1_o]</tt> 
     - <tt>[bv2_n - (bv1|bv2)_o] / [bv2_n - bv2_o]</tt> 

   <b>Note:</b> <tt>bv1_n = bv2_n</tt>
      
*/
template <typename T1, typename T2>
DoubleVect
OffBitProjSimilarity(const T1& bv1,const T2& bv2);


//! folds a bit vector \c factor times and returns the result
/*!
  \param bv1    the vector to be folded
  \param factor (optional) the number of times to fold it
  
  \return a pointer to the folded fingerprint, which is
     <tt>bv1_n/factor</tt> long.
     
   <b>Note:</b> The caller is responsible for <tt>delete</tt>ing the result.
 */
template <typename T1>
T1 *
FoldFingerprint(const T1& bv1,unsigned int factor=2);

//! returns a text representation of a bit vector (a string of 0s and 1s)
/*!
  \param bv1    the vector to use
  
  \return an std::string

 */
template <typename T1>
std::string
BitVectToText(const T1& bv1);

//! returns a hex representation of a bit vector compatible with Andrew Dalke's FPS format
/*!
  \param bv1    the vector to use
  
  \return an std::string

 */
template <typename T1>
std::string
BitVectToFPSText(const T1& bv1);

//! returns a binary string representation of a bit vector (an array of bytes)
/*!
  \param bv1    the vector to use
  
  \return an std::string

 */
template <typename T1>
std::string
BitVectToBinaryText(const T1& bv1);

//! updates a bit vector from Andrew Dalke's FPS format
/*!
  \param bv1    the vector to use
  \param fps    the FPS hex string


 */
template <typename T1>
void
UpdateBitVectFromFPSText(T1& bv1,const std::string &fps);

//! updates a bit vector from a binary string representation of a bit vector (an array of bytes)
/*!
  \param bv1    the vector to use
  \param fps    the binary string


 */
template <typename T1>
void
UpdateBitVectFromBinaryText(T1& bv1,const std::string &fps);



#endif