/usr/include/rdkit/Geometry/point.h is in librdkit-dev 201503-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | //
// Copyright (C) 2003-2008 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#ifndef __RD_POINT_H__
#define __RD_POINT_H__
#include <iostream>
#include <cmath>
#include <vector>
#include <map>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#include <RDGeneral/Invariant.h>
#include <Numerics/Vector.h>
#include <boost/smart_ptr.hpp>
namespace RDGeom {
class Point {
// this is the virtual base class, mandating certain functions
public:
virtual ~Point() {};
virtual double operator[](unsigned int i) const = 0;
virtual double& operator[](unsigned int i) = 0;
virtual void normalize() = 0;
virtual double length() const = 0;
virtual double lengthSq() const = 0;
virtual unsigned int dimension() const = 0;
virtual Point *copy() const = 0;
};
//typedef class Point3D Point;
class Point3D : public Point {
public:
double x,
y,
z;
Point3D() : x(0.0), y(0.0), z(0.0) {};
Point3D(double xv,double yv,double zv): x(xv),y(yv),z(zv) {};
~Point3D() {};
Point3D(const Point3D &other) :
Point(other), x(other.x), y(other.y), z(other.z) {
}
virtual Point *copy() const {
return new Point3D(*this);
}
inline unsigned int dimension() const {return 3;}
inline double operator[](unsigned int i) const {
PRECONDITION(i < 3, "Invalid index on Point3D");
if (i == 0) {
return x;
} else if (i == 1) {
return y;
} else {
return z;
}
}
inline double& operator[](unsigned int i) {
PRECONDITION(i < 3, "Invalid index on Point3D");
if (i == 0) {
return x;
} else if (i == 1) {
return y;
} else {
return z;
}
}
Point3D&
operator=(const Point3D &other)
{
x = other.x;y=other.y;z=other.z;
return *this;
};
Point3D& operator+=(const Point3D &other) {
x += other.x;
y += other.y;
z += other.z;
return *this;
};
Point3D& operator-=(const Point3D &other) {
x -= other.x;
y -= other.y;
z -= other.z;
return *this;
};
Point3D& operator*=(double scale) {
x *= scale;
y *= scale;
z *= scale;
return *this;
};
Point3D& operator/=(double scale) {
x /= scale;
y /= scale;
z /= scale;
return *this;
};
Point3D operator-() const {
Point3D res(x, y, z);
res.x *= -1.0;
res.y *= -1.0;
res.z *= -1.0;
return res;
}
void normalize() {
double l = this->length();
x /= l;
y /= l;
z /= l;
};
double length() const {
double res = x*x+y*y+z*z;
return sqrt(res);
};
double lengthSq() const {
//double res = pow(x,2) + pow(y,2) + pow(z,2);
double res = x*x+y*y+z*z;
return res;
};
double dotProduct(const Point3D &other) const {
double res = x*(other.x) + y*(other.y) + z*(other.z);
return res;
};
/*! \brief determines the angle between a vector to this point
* from the origin and a vector to the other point.
*
* The angle is unsigned: the results of this call will always
* be between 0 and M_PI
*/
double angleTo(const Point3D &other) const {
Point3D t1,t2;
t1 = *this;
t2 = other;
t1.normalize();
t2.normalize();
double dotProd = t1.dotProduct(t2);
// watch for roundoff error:
if(dotProd<-1.0) dotProd = -1.0;
else if(dotProd>1.0) dotProd = 1.0;
return acos(dotProd);
}
/*! \brief determines the signed angle between a vector to this point
* from the origin and a vector to the other point.
*
* The results of this call will be between 0 and M_2_PI
*/
double signedAngleTo(const Point3D &other) const {
double res=this->angleTo(other);
// check the sign of the z component of the cross product:
if((this->x*other.y-this->y*other.x)<-1e-6) res = 2.0*M_PI-res;
return res;
}
/*! \brief Returns a normalized direction vector from this
* point to another.
*
*/
Point3D directionVector(const Point3D &other) const {
Point3D res;
res.x = other.x - x;
res.y = other.y - y;
res.z = other.z - z;
res.normalize();
return res;
}
/*! \brief Cross product of this point with the another point
*
* The order is important here
* The result is "this" cross with "other" not (other x this)
*/
Point3D crossProduct(const Point3D &other) const {
Point3D res;
res.x = y*(other.z) - z*(other.y);
res.y = -x*(other.z) + z*(other.x);
res.z = x*(other.y) - y*(other.x);
return res;
};
/*! \brief Get a unit perpendicular from this point (treating it as a vector):
*
*/
Point3D getPerpendicular() const {
Point3D res(0.0,0.0,0.0);
if(x){
if(y){
res.y = -1*x;
res.x = y;
} else if(z) {
res.z = -1*x;
res.x = z;
} else {
res.y = 1;
}
} else if(y){
if(z){
res.z = -1*y;
res.y = z;
} else {
res.x = 1;
}
} else if(z){
res.x = 1;
}
double l=res.length();
POSTCONDITION(l>0.0,"zero perpendicular");
res /= l;
return res;
}
};
// given a set of four pts in 3D compute the dihedral angle between the
// plane of the first three points (pt1, pt2, pt3) and the plane of the
// last three points (pt2, pt3, pt4)
// the computed angle is between 0 and PI
double computeDihedralAngle(const Point3D &pt1, const Point3D &pt2,
const Point3D &pt3, const Point3D &pt4);
// given a set of four pts in 3D compute the signed dihedral angle between the
// plane of the first three points (pt1, pt2, pt3) and the plane of the
// last three points (pt2, pt3, pt4)
// the computed angle is between -PI and PI
double computeSignedDihedralAngle(const Point3D &pt1, const Point3D &pt2,
const Point3D &pt3, const Point3D &pt4);
class Point2D : public Point {
public:
double x,
y;
Point2D() : x(0.0), y(0.0) {};
Point2D(double xv,double yv): x(xv),y(yv) {};
~Point2D() {};
Point2D(const Point2D &other) : Point(other), x(other.x), y(other.y) {
}
virtual Point *copy() const {
return new Point2D(*this);
}
inline unsigned int dimension() const {return 2;}
inline double operator[](unsigned int i) const {
PRECONDITION(i < 2, "Invalid index on Point2D");
if (i == 0) {
return x;
} else {
return y;
}
}
inline double& operator[](unsigned int i) {
PRECONDITION(i < 2, "Invalid index on Point2D");
if (i == 0) {
return x;
} else {
return y;
}
}
Point2D&
operator=(const Point2D &other)
{
x = other.x;y=other.y;
return *this;
};
Point2D& operator+=(const Point2D &other) {
x += other.x;
y += other.y;
return *this;
};
Point2D& operator-=(const Point2D &other) {
x -= other.x;
y -= other.y;
return *this;
};
Point2D& operator*=(double scale){
x *= scale;
y *= scale;
return *this;
};
Point2D& operator/=(double scale){
x /= scale;
y /= scale;
return *this;
};
Point2D operator-() const {
Point2D res(x, y);
res.x *= -1.0;
res.y *= -1.0;
return res;
}
void normalize() {
double ln = this->length();
x /= ln;
y /= ln;
};
void rotate90() {
double temp = x;
x = -y;
y = temp;
}
double length() const {
//double res = pow(x,2) + pow(y,2);
double res = x*x+y*y;
return sqrt(res);
};
double lengthSq() const {
double res = x*x+y*y;
return res;
};
double dotProduct(const Point2D &other) const {
double res = x*(other.x) + y*(other.y);
return res;
};
double angleTo(const Point2D &other) const {
Point2D t1,t2;
t1 = *this;
t2 = other;
t1.normalize();
t2.normalize();
double dotProd = t1.dotProduct(t2);
// watch for roundoff error:
if(dotProd<-1.0) dotProd = -1.0;
else if(dotProd>1.0) dotProd = 1.0;
return acos(dotProd);
}
double signedAngleTo(const Point2D &other) const {
double res=this->angleTo(other);
if((this->x*other.y-this->y*other.x)<-1e-6) res = 2.0*M_PI-res;
return res;
}
Point2D directionVector(const Point2D &other) const {
Point2D res;
res.x = other.x - x;
res.y = other.y - y;
res.normalize();
return res;
}
};
class PointND : public Point {
public:
typedef boost::shared_ptr<RDNumeric::Vector<double> > VECT_SH_PTR;
PointND(unsigned int dim){
RDNumeric::Vector<double> *nvec = new RDNumeric::Vector<double>(dim, 0.0);
dp_storage.reset(nvec);
};
PointND(const PointND &other) : Point(other) {
RDNumeric::Vector<double> *nvec = new RDNumeric::Vector<double>(*other.getStorage());
dp_storage.reset(nvec);
}
virtual Point *copy() const {
return new PointND(*this);
}
#if 0
template <typename T>
PointND(const T &vals){
RDNumeric::Vector<double> *nvec = new RDNumeric::Vector<double>(vals.size(), 0.0);
dp_storage.reset(nvec);
unsigned int idx=0;
typename T::const_iterator it;
for(it=vals.begin();
it!=vals.end();
++it){
nvec->setVal(idx,*it);
++idx;
};
};
#endif
~PointND() {}
inline double operator[](unsigned int i) const {
return dp_storage.get()->getVal(i);
}
inline double& operator[](unsigned int i) {
return (*dp_storage.get())[i];
}
inline void normalize() {
dp_storage.get()->normalize();
}
inline double length() const {
return dp_storage.get()->normL2();
}
inline double lengthSq() const {
return dp_storage.get()->normL2Sq();
}
unsigned int dimension() const {
return dp_storage.get()->size();
}
PointND& operator=(const PointND &other) {
RDNumeric::Vector<double> *nvec = new RDNumeric::Vector<double>(*other.getStorage());
dp_storage.reset(nvec);
return *this;
}
PointND& operator+=(const PointND &other) {
(*dp_storage.get()) += (*other.getStorage());
return *this;
}
PointND& operator-=(const PointND &other) {
(*dp_storage.get()) -= (*other.getStorage());
return *this;
}
PointND& operator*=(double scale) {
(*dp_storage.get()) *= scale;
return *this;
}
PointND& operator/=(double scale) {
(*dp_storage.get()) /= scale;
return *this;
}
PointND directionVector(const PointND &other) {
PRECONDITION(this->dimension() == other.dimension(), "Point dimensions do not match");
PointND np(other);
np -= (*this);
np.normalize();
return np;
}
double dotProduct(const PointND &other) const {
return dp_storage.get()->dotProduct(*other.getStorage());
}
double angleTo(const PointND &other) const {
double dp = this->dotProduct(other);
double n1 = this->length();
double n2 = other.length();
if ((n1 > 1.e-8) && (n2 > 1.e-8)) {
dp /= (n1*n2);
}
if (dp < -1.0) dp = -1.0;
else if (dp > 1.0) dp = 1.0;
return acos(dp);
}
private:
VECT_SH_PTR dp_storage;
inline const RDNumeric::Vector<double> * getStorage() const {
return dp_storage.get();
}
};
typedef std::vector<RDGeom::Point *> PointPtrVect;
typedef PointPtrVect::iterator PointPtrVect_I;
typedef PointPtrVect::const_iterator PointPtrVect_CI;
typedef std::vector<RDGeom::Point3D *> Point3DPtrVect;
typedef std::vector<RDGeom::Point2D *> Point2DPtrVect;
typedef Point3DPtrVect::iterator Point3DPtrVect_I;
typedef Point3DPtrVect::const_iterator Point3DPtrVect_CI;
typedef Point2DPtrVect::iterator Point2DPtrVect_I;
typedef Point2DPtrVect::const_iterator Point2DPtrVect_CI;
typedef std::vector<const RDGeom::Point3D *> Point3DConstPtrVect;
typedef Point3DConstPtrVect::iterator Point3DConstPtrVect_I;
typedef Point3DConstPtrVect::const_iterator Point3DConstPtrVect_CI;
typedef std::vector<Point3D> POINT3D_VECT;
typedef std::vector<Point3D>::iterator POINT3D_VECT_I;
typedef std::vector<Point3D>::const_iterator POINT3D_VECT_CI;
typedef std::map<int, Point2D> INT_POINT2D_MAP;
typedef INT_POINT2D_MAP::iterator INT_POINT2D_MAP_I;
typedef INT_POINT2D_MAP::const_iterator INT_POINT2D_MAP_CI;
std::ostream & operator<<(std::ostream& target, const RDGeom::Point &pt);
RDGeom::Point3D operator+ (const RDGeom::Point3D& p1, const RDGeom::Point3D& p2);
RDGeom::Point3D operator- (const RDGeom::Point3D& p1, const RDGeom::Point3D& p2);
RDGeom::Point3D operator* (const RDGeom::Point3D& p1, double v);
RDGeom::Point3D operator/ (const RDGeom::Point3D& p1, double v);
RDGeom::Point2D operator+ (const RDGeom::Point2D& p1, const RDGeom::Point2D& p2);
RDGeom::Point2D operator- (const RDGeom::Point2D& p1, const RDGeom::Point2D& p2);
RDGeom::Point2D operator* (const RDGeom::Point2D& p1, double v);
RDGeom::Point2D operator/ (const RDGeom::Point2D& p1, double v);
RDGeom::PointND operator+ (const RDGeom::PointND& p1, const RDGeom::PointND& p2);
RDGeom::PointND operator- (const RDGeom::PointND& p1, const RDGeom::PointND& p2);
RDGeom::PointND operator* (const RDGeom::PointND& p1, double v);
RDGeom::PointND operator/ (const RDGeom::PointND& p1, double v);
}
#endif
|