This file is indexed.

/usr/include/rdkit/GraphMol/new_canon.h is in librdkit-dev 201503-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
//
//  Copyright (C) 2014 Greg Landrum
//  Adapted from pseudo-code from Roger Sayle
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include <RDGeneral/hanoiSort.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/RingInfo.h>
#include <boost/cstdint.hpp>
#include <boost/foreach.hpp>
#include <boost/dynamic_bitset.hpp>
#include <cstring>
#include <iostream>
#include <cassert>
#include <cstring>
#include <vector>

//#define VERBOSE_CANON 1

namespace RDKit {
  namespace Canon{

    struct bondholder {
      Bond::BondType bondType;
      unsigned int bondStereo;
      unsigned int nbrSymClass;
      unsigned int nbrIdx;
      bondholder() : bondType(Bond::UNSPECIFIED),
          bondStereo(static_cast<unsigned int>(Bond::STEREONONE)),
          nbrIdx(0), nbrSymClass(0){};
      bondholder(Bond::BondType bt,Bond::BondStereo bs,unsigned int ni,unsigned int nsc) :
        bondType(bt),
        bondStereo(static_cast<unsigned int>(bs)),
        nbrIdx(ni),
        nbrSymClass(nsc){};
      bondholder(Bond::BondType bt,unsigned int bs,unsigned int ni,unsigned int nsc) :
        bondType(bt),
        bondStereo(bs),
        nbrIdx(ni),
        nbrSymClass(nsc){};
      bool operator<(const bondholder &o) const {
        if(bondType!=o.bondType)
          return bondType<o.bondType;
        if(bondStereo!=o.bondStereo)
          return bondStereo<o.bondStereo;
        return nbrSymClass<o.nbrSymClass;
      }
      static bool greater(const bondholder &lhs,const bondholder &rhs){
        if(lhs.bondType!=rhs.bondType)
          return lhs.bondType>rhs.bondType;
        if(lhs.bondStereo!=rhs.bondStereo)
          return lhs.bondStereo>rhs.bondStereo;
        return lhs.nbrSymClass>rhs.nbrSymClass;
      }

      static int compare(const bondholder &x,const bondholder &y,unsigned int div=1){
        if(x.bondType<y.bondType)
          return -1;
        else if(x.bondType>y.bondType)
          return 1;
        if(x.bondStereo<y.bondStereo)
          return -1;
        else if(x.bondStereo>y.bondStereo)
          return 1;
        return x.nbrSymClass/div-y.nbrSymClass/div;
      }
    };

    struct canon_atom{
      const Atom *atom;
      int index;
      unsigned int degree;
      unsigned int totalNumHs;
      bool hasRingNbr;
      bool isRingStereoAtom;
      int* nbrIds;
      const std::string *p_symbol; // if provided, this is used to order atoms
      unsigned int neighborNum;
      unsigned int revistedNeighbors;
      std::vector<bondholder> bonds;

      canon_atom() : atom(NULL),index(-1),degree(0),totalNumHs(0),
          hasRingNbr(false), isRingStereoAtom(false), nbrIds(NULL),
          p_symbol(NULL), neighborNum(0), revistedNeighbors(0) {};
    };

    void updateAtomNeighborIndex(canon_atom* atoms, std::vector<bondholder> &nbrs);

    void updateAtomNeighborNumSwaps(canon_atom* atoms, std::vector<bondholder> &nbrs,
        unsigned int atomIdx, std::vector<std::pair<unsigned int, unsigned int> >& result);

    /*
     * Different types of atom compare functions:
     *
     * - SpecialChiralityAtomCompareFunctor: Allows canonizing molecules exhibiting dependent chirality
     * - SpecialSymmetryAtomCompareFunctor: Very specialized, allows canonizing highly symmetrical graphs/molecules
     * - AtomCompareFunctor: Basic atom compare function which also allows to include neighbors within the ranking
     */

    class SpecialChiralityAtomCompareFunctor {

    public:
      Canon::canon_atom *dp_atoms;
      const ROMol *dp_mol;
      const boost::dynamic_bitset<> *dp_atomsInPlay,*dp_bondsInPlay;

      SpecialChiralityAtomCompareFunctor() : dp_atoms(NULL), dp_mol(NULL),
          dp_atomsInPlay(NULL), dp_bondsInPlay(NULL) {
      };
      SpecialChiralityAtomCompareFunctor(Canon::canon_atom *atoms, const ROMol &m,
          const boost::dynamic_bitset<> *atomsInPlay=NULL,
          const boost::dynamic_bitset<> *bondsInPlay=NULL ) :
            dp_atoms(atoms), dp_mol(&m),
            dp_atomsInPlay(atomsInPlay),dp_bondsInPlay(bondsInPlay) {
      };
      int operator()(int i,int j) const {
        PRECONDITION(dp_atoms,"no atoms");
        PRECONDITION(dp_mol,"no molecule");
        PRECONDITION(i!=j,"bad call");
        if(dp_atomsInPlay && !((*dp_atomsInPlay)[i] || (*dp_atomsInPlay)[j])){
          return 0;
        }

        if((dp_atomsInPlay && (*dp_atomsInPlay)[i]) || !dp_atomsInPlay){
          updateAtomNeighborIndex(dp_atoms, dp_atoms[i].bonds);
        }
        if((dp_atomsInPlay && (*dp_atomsInPlay)[j]) || !dp_atomsInPlay){
          updateAtomNeighborIndex(dp_atoms, dp_atoms[j].bonds);
        }
        for(unsigned int ii=0;ii<dp_atoms[i].bonds.size() && ii<dp_atoms[j].bonds.size();++ii){
          int cmp=bondholder::compare(dp_atoms[i].bonds[ii],dp_atoms[j].bonds[ii]);
          if(cmp) return cmp;
        }

        std::vector<std::pair<unsigned int, unsigned int> > swapsi;
        std::vector<std::pair<unsigned int, unsigned int> > swapsj;
        if((dp_atomsInPlay && (*dp_atomsInPlay)[i]) || !dp_atomsInPlay){
           updateAtomNeighborNumSwaps(dp_atoms, dp_atoms[i].bonds,i,swapsi);
        }
        if((dp_atomsInPlay && (*dp_atomsInPlay)[j]) || !dp_atomsInPlay){
           updateAtomNeighborNumSwaps(dp_atoms, dp_atoms[j].bonds,j,swapsj);
        }
        for(unsigned int ii=0;ii<swapsi.size() && ii<swapsj.size();++ii){
          int cmp=swapsi[ii].second-swapsj[ii].second;
          if(cmp) return cmp;
        }
        return 0;
      }
    };

    class SpecialSymmetryAtomCompareFunctor {

    public:
      Canon::canon_atom *dp_atoms;
      const ROMol *dp_mol;
      const boost::dynamic_bitset<> *dp_atomsInPlay,*dp_bondsInPlay;

      SpecialSymmetryAtomCompareFunctor() : dp_atoms(NULL), dp_mol(NULL),
          dp_atomsInPlay(NULL), dp_bondsInPlay(NULL) {
      };
      SpecialSymmetryAtomCompareFunctor(Canon::canon_atom *atoms, const ROMol &m,
          const boost::dynamic_bitset<> *atomsInPlay=NULL,
          const boost::dynamic_bitset<> *bondsInPlay=NULL ) :
            dp_atoms(atoms), dp_mol(&m),
            dp_atomsInPlay(atomsInPlay),dp_bondsInPlay(bondsInPlay) {
      };
      int operator()(int i,int j) const {
        PRECONDITION(dp_atoms,"no atoms");
        PRECONDITION(dp_mol,"no molecule");
        PRECONDITION(i!=j,"bad call");
        if(dp_atomsInPlay && !((*dp_atomsInPlay)[i] || (*dp_atomsInPlay)[j])){
          return 0;
        }

        if(dp_atoms[i].neighborNum < dp_atoms[j].neighborNum){
          return -1;
        }
        else if(dp_atoms[i].neighborNum > dp_atoms[j].neighborNum){
          return 1;
        }

        if(dp_atoms[i].revistedNeighbors < dp_atoms[j].revistedNeighbors){
          return -1;
        }
        else if(dp_atoms[i].revistedNeighbors > dp_atoms[j].revistedNeighbors){
          return 1;
        }

        if((dp_atomsInPlay && (*dp_atomsInPlay)[i]) || !dp_atomsInPlay){
          updateAtomNeighborIndex(dp_atoms, dp_atoms[i].bonds);
        }
        if((dp_atomsInPlay && (*dp_atomsInPlay)[j]) || !dp_atomsInPlay){
          updateAtomNeighborIndex(dp_atoms, dp_atoms[j].bonds);
        }
        for(unsigned int ii=0;ii<dp_atoms[i].bonds.size() && ii<dp_atoms[j].bonds.size();++ii){
          int cmp=bondholder::compare(dp_atoms[i].bonds[ii],dp_atoms[j].bonds[ii]);
          if(cmp) return cmp;
        }

        if(dp_atoms[i].bonds.size()<dp_atoms[j].bonds.size()){
          return -1;
        } else if(dp_atoms[i].bonds.size()>dp_atoms[j].bonds.size()) {
          return 1;
        }
        return 0;
      }
    };

    class AtomCompareFunctor {

      unsigned int getAtomRingNbrCode(unsigned int i) const {
        if(!dp_atoms[i].hasRingNbr) return 0;

        const Atom *at=dp_atoms[i].atom;
        int *nbrs = dp_atoms[i].nbrIds;
        unsigned int code=0;
        for(unsigned j=0; j<dp_atoms[i].degree; ++j){
          if(dp_atoms[nbrs[j]].isRingStereoAtom){

            code += dp_atoms[nbrs[j]].index*10000+1;//j;
          }
        }
        return code;
      }

      int basecomp(int i,int j) const {
        PRECONDITION(dp_atoms,"no atoms");
        unsigned int ivi,ivj;

        // always start with the current class:
        ivi= dp_atoms[i].index;
        ivj= dp_atoms[j].index;
        if(ivi<ivj)
          return -1;
        else if(ivi>ivj)
          return 1;

        // use the atom-mapping numbers if they were assigned
        std::string molAtomMapNumber_i="";
        std::string molAtomMapNumber_j="";
        dp_atoms[i].atom->getPropIfPresent(common_properties::molAtomMapNumber,molAtomMapNumber_i);
        dp_atoms[j].atom->getPropIfPresent(common_properties::molAtomMapNumber,molAtomMapNumber_j);
        if(molAtomMapNumber_i<molAtomMapNumber_j)
          return -1;
        else if(molAtomMapNumber_i>molAtomMapNumber_j)
          return 1;

        // start by comparing degree
        ivi= dp_atoms[i].degree;
        ivj= dp_atoms[j].degree;
        if(ivi<ivj)
          return -1;
        else if(ivi>ivj)
          return 1;

        if(dp_atoms[i].p_symbol &&
            dp_atoms[j].p_symbol ) {
          if( *(dp_atoms[i].p_symbol) < *(dp_atoms[j].p_symbol) )
            return -1;
          else if( *(dp_atoms[i].p_symbol) > *(dp_atoms[j].p_symbol) )
            return 1;
          else
            return 0;
        }
        // move onto atomic number
        ivi= dp_atoms[i].atom->getAtomicNum();
        ivj= dp_atoms[j].atom->getAtomicNum();
        if(ivi<ivj)
          return -1;
        else if(ivi>ivj)
          return 1;

        // isotopes if we're using them
        if(df_useIsotopes){
          ivi=dp_atoms[i].atom->getIsotope();
          ivj=dp_atoms[j].atom->getIsotope();
          if(ivi<ivj)
            return -1;
          else if(ivi>ivj)
            return 1;
        }

        // nHs
        ivi=dp_atoms[i].totalNumHs;
        ivj=dp_atoms[j].totalNumHs;
        if(ivi<ivj)
          return -1;
        else if(ivi>ivj)
          return 1;

        // charge
        ivi=dp_atoms[i].atom->getFormalCharge();
        ivj=dp_atoms[j].atom->getFormalCharge();
        if(ivi<ivj)
          return -1;
        else if(ivi>ivj)
          return 1;

        // chirality if we're using it
        if(df_useChirality){
          // first atom stereochem:
          ivi=0;
          ivj=0;
          std::string cipCode;
          if(dp_atoms[i].atom->getPropIfPresent(common_properties::_CIPCode,cipCode)){
            ivi=cipCode=="R"?2:1;
          }
          if(dp_atoms[j].atom->getPropIfPresent(common_properties::_CIPCode,cipCode)){
            ivj=cipCode=="R"?2:1;
          }
          if(ivi<ivj)
            return -1;
          else if(ivi>ivj)
            return 1;

          // can't actually use values here, because they are arbitrary
          ivi=dp_atoms[i].atom->getChiralTag()!=0;
          ivj=dp_atoms[j].atom->getChiralTag()!=0;
          if(ivi<ivj)
            return -1;
          else if(ivi>ivj)
            return 1;

        }
        if(df_useChiralityRings){
          // ring stereochemistry
          ivi=getAtomRingNbrCode(i);
          ivj=getAtomRingNbrCode(j);
          if(ivi<ivj)
            return -1;
          else if(ivi>ivj)
            return 1;
          // bond stereo is taken care of in the neighborhood comparison
        }
        return 0;
      }
    public:
      Canon::canon_atom *dp_atoms;
      const ROMol *dp_mol;
      const boost::dynamic_bitset<> *dp_atomsInPlay,*dp_bondsInPlay;
      bool df_useNbrs;
      bool df_useIsotopes;
      bool df_useChirality;
      bool df_useChiralityRings;

      AtomCompareFunctor() : dp_atoms(NULL), dp_mol(NULL),
                             dp_atomsInPlay(NULL), dp_bondsInPlay(NULL),
                             df_useNbrs(false),
                             df_useIsotopes(true), df_useChirality(true), df_useChiralityRings(true) {
      };
      AtomCompareFunctor(Canon::canon_atom *atoms, const ROMol &m,
                         const boost::dynamic_bitset<> *atomsInPlay=NULL,
                         const boost::dynamic_bitset<> *bondsInPlay=NULL ) :
        dp_atoms(atoms), dp_mol(&m),
        dp_atomsInPlay(atomsInPlay),dp_bondsInPlay(bondsInPlay),
        df_useNbrs(false),df_useIsotopes(true), df_useChirality(true), df_useChiralityRings(true) {
      };
      int operator()(int i,int j) const {
        PRECONDITION(dp_atoms,"no atoms");
        PRECONDITION(dp_mol,"no molecule");
        PRECONDITION(i!=j,"bad call");
        if(dp_atomsInPlay && !((*dp_atomsInPlay)[i] || (*dp_atomsInPlay)[j])){
          return 0;
        }

        int v=basecomp(i,j);
        if(v){
          return v;
        }

        if(df_useNbrs){
          if((dp_atomsInPlay && (*dp_atomsInPlay)[i]) || !dp_atomsInPlay){
            updateAtomNeighborIndex(dp_atoms, dp_atoms[i].bonds);
          }
          if((dp_atomsInPlay && (*dp_atomsInPlay)[j]) || !dp_atomsInPlay){
            updateAtomNeighborIndex(dp_atoms, dp_atoms[j].bonds);
          }

          for(unsigned int ii=0;ii<dp_atoms[i].bonds.size() && ii<dp_atoms[j].bonds.size();++ii){
            int cmp=bondholder::compare(dp_atoms[i].bonds[ii],dp_atoms[j].bonds[ii]);
            if(cmp) return cmp;
          }

          if(dp_atoms[i].bonds.size()<dp_atoms[j].bonds.size()){
            return -1;
          } else if(dp_atoms[i].bonds.size()>dp_atoms[j].bonds.size()) {
            return 1;
          }
        }
        return 0;
      }
    };

    /*
     * A compare function to discriminate chiral atoms, similar to the CIP rules.
     * This functionality is currently not used.
     */

    const unsigned int ATNUM_CLASS_OFFSET=10000;
    class ChiralAtomCompareFunctor {
      void getAtomNeighborhood(std::vector<bondholder> &nbrs) const{
        for(unsigned j=0; j < nbrs.size(); ++j){
          unsigned int nbrIdx = nbrs[j].nbrIdx;
          if(nbrIdx == ATNUM_CLASS_OFFSET){
            // Ignore the Hs
            continue;
          }
          const Atom *nbr = dp_atoms[nbrIdx].atom;
          nbrs[j].nbrSymClass = nbr->getAtomicNum()*ATNUM_CLASS_OFFSET+dp_atoms[nbrIdx].index+1;
        }
        std::sort(nbrs.begin(),nbrs.end(),bondholder::greater);
        // FIX: don't want to be doing this long-term
      }

      int basecomp(int i,int j) const {
        PRECONDITION(dp_atoms,"no atoms");
        unsigned int ivi,ivj;

        // always start with the current class:
        ivi= dp_atoms[i].index;
        ivj= dp_atoms[j].index;
        if(ivi<ivj)
          return -1;
        else if(ivi>ivj)
          return 1;

        // move onto atomic number
        ivi= dp_atoms[i].atom->getAtomicNum();
        ivj= dp_atoms[j].atom->getAtomicNum();
        if(ivi<ivj)
          return -1;
        else if(ivi>ivj)
          return 1;

        // isotopes:
        ivi=dp_atoms[i].atom->getIsotope();
        ivj=dp_atoms[j].atom->getIsotope();
        if(ivi<ivj)
          return -1;
        else if(ivi>ivj)
          return 1;

        // atom stereochem:
        ivi=0;
        ivj=0;
        std::string cipCode;
        if(dp_atoms[i].atom->getPropIfPresent(common_properties::_CIPCode,cipCode)){
          ivi=cipCode=="R"?2:1;
        }
        if(dp_atoms[j].atom->getPropIfPresent(common_properties::_CIPCode,cipCode)){
          ivj=cipCode=="R"?2:1;
        }
        if(ivi<ivj)
          return -1;
        else if(ivi>ivj)
          return 1;

        // bond stereo is taken care of in the neighborhood comparison
        return 0;
      }
    public:
      Canon::canon_atom *dp_atoms;
      const ROMol *dp_mol;
      bool df_useNbrs;
      ChiralAtomCompareFunctor() : dp_atoms(NULL), dp_mol(NULL), df_useNbrs(false) {
      };
      ChiralAtomCompareFunctor(Canon::canon_atom *atoms, const ROMol &m) : dp_atoms(atoms), dp_mol(&m), df_useNbrs(false) {
      };
      int operator()(int i,int j) const {
        PRECONDITION(dp_atoms,"no atoms");
        PRECONDITION(dp_mol,"no molecule");
        PRECONDITION(i!=j,"bad call");
        int v=basecomp(i,j);
        if(v) return v;

        if(df_useNbrs){
          getAtomNeighborhood(dp_atoms[i].bonds);
          getAtomNeighborhood(dp_atoms[j].bonds);

          // we do two passes through the neighbor lists. The first just uses the
          // atomic numbers (by passing the optional 10000 to bondholder::compare),
          // the second takes the already-computed index into account
          for(unsigned int ii=0;ii<dp_atoms[i].bonds.size() && ii<dp_atoms[j].bonds.size();++ii){
            int cmp=bondholder::compare(dp_atoms[i].bonds[ii],dp_atoms[j].bonds[ii],ATNUM_CLASS_OFFSET);
            if(cmp) return cmp;
          }
          for(unsigned int ii=0;ii<dp_atoms[i].bonds.size() && ii<dp_atoms[j].bonds.size();++ii){
            int cmp=bondholder::compare(dp_atoms[i].bonds[ii],dp_atoms[j].bonds[ii]);
            if(cmp) return cmp;
          }
          if(dp_atoms[i].bonds.size()<dp_atoms[j].bonds.size()){
            return -1;
          } else if(dp_atoms[i].bonds.size()>dp_atoms[j].bonds.size()) {
            return 1;
          }
        }
        return 0;
      }
    };

    /*
     * Basic canonicalization function to organize the partitions which will be sorted next.
     * */

    template <typename CompareFunc>
    void RefinePartitions(const ROMol &mol,
                          canon_atom *atoms,
                          CompareFunc compar, int mode,
                          int *order,
                          int *count,
                          int &activeset, int *next,
                          int *changed,
                          char *touchedPartitions){
      unsigned int nAtoms=mol.getNumAtoms();
      register int partition;
      register int symclass;
      register int *start;
      register int offset;
      register int index;
      register int len;
      register int i;
      //std::vector<char> touchedPartitions(mol.getNumAtoms(),0);
      
      // std::cerr<<"&&&&&&&&&&&&&&&& RP"<<std::endl;
      while( activeset != -1 ) {
        //std::cerr<<"ITER: "<<activeset<<" next: "<<next[activeset]<<std::endl;
        // std::cerr<<" next: ";
        // for(unsigned int ii=0;ii<nAtoms;++ii){
        //   std::cerr<<ii<<":"<<next[ii]<<" ";
        // }
        // std::cerr<<std::endl; 
        // for(unsigned int ii=0;ii<nAtoms;++ii){
        //   std::cerr<<order[ii]<<" count: "<<count[order[ii]]<<" index: "<<atoms[order[ii]].index<<std::endl;
        // }

        partition = activeset;
        activeset = next[partition];
        next[partition] = -2;

        len = count[partition]; 
        offset = atoms[partition].index;
        start = order+offset;
        // std::cerr<<"\n\n**************************************************************"<<std::endl;
        // std::cerr<<"  sort - class:"<<atoms[partition].index<<" len: "<<len<<":";
        // for(unsigned int ii=0;ii<len;++ii){
        //   std::cerr<<" "<<order[offset+ii]+1;
        // }
        // std::cerr<<std::endl;
        // for(unsigned int ii=0;ii<nAtoms;++ii){
        //   std::cerr<<order[ii]+1<<" count: "<<count[order[ii]]<<" index: "<<atoms[order[ii]].index<<std::endl;
        // }
        hanoisort(start,len,count,changed, compar);
        // std::cerr<<"*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*"<<std::endl;
        // std::cerr<<"  result:";
        // for(unsigned int ii=0;ii<nAtoms;++ii){
        //    std::cerr<<order[ii]+1<<" count: "<<count[order[ii]]<<" index: "<<atoms[order[ii]].index<<std::endl;
        //  }
        for(unsigned k = 0; k < len; ++k){
          changed[start[k]]=0;
        }

        index = start[0];
        // std::cerr<<"  len:"<<len<<" index:"<<index<<" count:"<<count[index]<<std::endl;
        for( i=count[index]; i<len; i++ ) {
          index = start[i];
          if( count[index] )
            symclass = offset+i;
          atoms[index].index = symclass;
          // std::cerr<<" "<<index+1<<"("<<symclass<<")";
          //if(mode && (activeset<0 || count[index]>count[activeset]) ){
          //  activeset=index;
          //}
          for(unsigned j = 0; j < atoms[index].degree; ++j){
            changed[atoms[index].nbrIds[j]]=1;
          }
        }
        // std::cerr<<std::endl;

        if( mode ) {
          index=start[0];
          for( i=count[index]; i<len; i++ ) {
            index=start[i];
            for(unsigned j = 0; j < atoms[index].degree; ++j){
              unsigned int nbor = atoms[index].nbrIds[j];
              touchedPartitions[atoms[nbor].index]=1;
            }
          }
          for(unsigned int ii=0; ii<nAtoms; ++ii) {
            if(touchedPartitions[ii]){
              partition = order[ii];
              if( (count[partition]>1) &&
                  (next[partition]==-2) ) {
                next[partition] = activeset;
                activeset = partition;
              }
              touchedPartitions[ii] = 0;
            }
          }
        }
      }
    } // end of RefinePartitions()



    template <typename CompareFunc>
    void BreakTies(const ROMol &mol,
                   canon_atom *atoms,
                   CompareFunc compar, int mode,
                   int *order,
                   int *count,
                   int &activeset, int *next,
                   int *changed,
                   char *touchedPartitions){
      unsigned int nAtoms=mol.getNumAtoms();
      register int partition;
      register int offset;
      register int index;
      register int len;
      int oldPart = 0;

      for(unsigned int i=0; i<nAtoms; i++ ) {
        partition = order[i];
        oldPart = atoms[partition].index;
        while( count[partition] > 1 ) {
          len = count[partition];
          offset = atoms[partition].index+len-1;
          index = order[offset];
          atoms[index].index = offset;
          count[partition] = len-1;
          count[index] = 1;

          //test for ions, water molecules with no
          if(atoms[index].degree < 1){
            continue;
          }
          for(unsigned j = 0; j < atoms[index].degree; ++j){
            unsigned int nbor = atoms[index].nbrIds[j];
            touchedPartitions[atoms[nbor].index]=1;
            changed[nbor]=1;
          }

          for(unsigned int ii=0; ii<nAtoms; ++ii) {
            if(touchedPartitions[ii]){
              int npart = order[ii];
              if( (count[npart]>1) &&
                  (next[npart]==-2) ) {
                next[npart] = activeset;
                activeset = npart;
              }
              touchedPartitions[ii] = 0;
            }
          }
          RefinePartitions(mol,atoms,compar,mode,order,count,activeset,next,changed,touchedPartitions);
        }
        //not sure if this works each time
        if(atoms[partition].index != oldPart){
          i-=1;
        }
      }
    } // end of BreakTies()


    void CreateSinglePartition(unsigned int nAtoms,
                               int *order,
                               int *count,
                               canon_atom *atoms);

    void ActivatePartitions(unsigned int nAtoms,
                            int *order,
                            int *count,
                            int &activeset,int *next,
                            int *changed);

    void rankMolAtoms(const ROMol &mol,std::vector<unsigned int> &res,
                      bool breakTies=true,
                      bool includeChirality=true,
                      bool includeIsotopes=true);

    void rankFragmentAtoms(const ROMol &mol,std::vector<unsigned int> &res, 
                           const boost::dynamic_bitset<> &atomsInPlay,
                           const boost::dynamic_bitset<> &bondsInPlay,
                           const std::vector<std::string> *atomSymbols=NULL,
                           bool breakTies=true,
                           bool includeChirality=true,
                           bool includeIsotopes=true);

    void chiralRankMolAtoms(const ROMol &mol,std::vector<unsigned int> &res);

    void initCanonAtoms(const ROMol &mol,std::vector<Canon::canon_atom> &atoms,
                        bool includeChirality=true);


  } // end of Canon namespace
} // end of RDKit namespace