This file is indexed.

/usr/include/rdkit/Numerics/Optimizer/BFGSOpt.h is in librdkit-dev 201503-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//
// Copyright (C)  2004-2008 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <math.h>
#include <RDGeneral/Invariant.h>
#include <cstring>
#include <algorithm>

namespace BFGSOpt {
  const double FUNCTOL=1e-4;  //!< Default tolerance for function convergence in the minimizer
  const double MOVETOL=1e-7;  //!< Default tolerance for x changes in the minimizer
  const int    MAXITS=200;    //!< Default maximum number of iterations
  const double EPS=3e-8;      //!< Default gradient tolerance in the minimizer
  const double TOLX=4.*EPS;   //!< Default direction vector tolerance in the minimizer
  const double MAXSTEP=100.0; //!< Default maximim step size in the minimizer

  //! Do a Quasi-Newton minimization along a line.  
  /*!
    See Numerical Recipes in C, Section 9.7 for a description of the algorithm.
  
     \param dim     the dimensionality of the space.
     \param oldPt   the current position, as an array.
     \param oldVal  the current function value.
     \param grad    the value of the function gradient at oldPt
     \param dir     the minimization direction
     \param newPt   used to return the final position
     \param newVal  used to return the final function value
     \param func    the function to minimize
     \param maxStep the maximum allowable step size
     \param resCode used to return the results of the search.
    
     Possible values for resCode are on return are:
      -  0: success
      -  1: the stepsize got too small.  This probably indicates success.
      - -1: the direction is bad (orthogonal to the gradient)
  */
  template <typename EnergyFunctor>
  void linearSearch(unsigned int dim,double *oldPt,double oldVal,
                    double *grad,double *dir,double *newPt,
                    double &newVal,
                    EnergyFunctor func,
                    double maxStep,int &resCode){
    PRECONDITION(oldPt,"bad input array");
    PRECONDITION(grad,"bad input array");
    PRECONDITION(dir,"bad input array");
    PRECONDITION(newPt,"bad input array");

    const unsigned int MAX_ITER_LINEAR_SEARCH = 1000;
    double sum=0.0,slope=0.0,test=0.0,lambda=0.0;
    double lambda2=0.0,lambdaMin=0.0,tmpLambda=0.0,val2=0.0;

    resCode=-1;

    // get the length of the direction vector:
    sum=0.0;
    for(unsigned int i=0;i<dim;i++)
      sum +=dir[i]*dir[i];
    sum=sqrt(sum);

    // rescale if we're trying to move too far:
    if(sum>maxStep){
      for(unsigned int i=0;i<dim;i++)
        dir[i] *= maxStep/sum;
    }
      
    // make sure our direction has at least some component along
    // -grad
    slope=0.0;
    for(unsigned int i=0;i<dim;i++){
      slope += dir[i]*grad[i];
    }
    if(slope>=0.0){
      return;
    }

    test=0.0;
    for(unsigned int i=0;i<dim;i++){
      double temp=fabs(dir[i])/std::max(fabs(oldPt[i]),1.0);
      if(temp>test) test=temp;
    }

    lambdaMin = MOVETOL/test;
    lambda = 1.0;
    unsigned int it = 0;
    while(it < MAX_ITER_LINEAR_SEARCH){
      //std::cerr << "\t" << it<<" : "<<lambda << " " << lambdaMin << std::endl;
      if(lambda<lambdaMin){
        // the position change is too small
        resCode=1;
        break;
      }
      for(unsigned int i=0;i<dim;i++){
        newPt[i]=oldPt[i]+lambda*dir[i];
      }
      newVal = func(newPt);

      if( newVal-oldVal <= FUNCTOL*lambda*slope ){
        // we're converged on the function:
        resCode=0;
        return;
      }
      // if we made it this far, we need to backtrack:
      if(it == 0){
        // it's the first step:
        tmpLambda = -slope / (2.0*(newVal-oldVal-slope));
      } else {
        double rhs1 = newVal-oldVal-lambda*slope;
        double rhs2 = val2-oldVal-lambda2*slope;
        double a = (rhs1/(lambda*lambda) - rhs2/(lambda2*lambda2))/
          (lambda-lambda2);
        double b = (-lambda2*rhs1/(lambda*lambda)+lambda*rhs2/(lambda2*lambda2))/
          (lambda-lambda2);
        if( a==0.0 ){
          tmpLambda = -slope/(2.0*b);
        } else {
          double disc=b*b-3*a*slope;
          if(disc<0.0){
            tmpLambda = 0.5*lambda;
          } else if(b<=0.0) {
            tmpLambda = (-b+sqrt(disc))/(3.0*a);
          } else {
            tmpLambda = -slope/(b+sqrt(disc));
          }
        }
        if( tmpLambda > 0.5*lambda ){
          tmpLambda = 0.5*lambda;
        }
      }
      lambda2 = lambda;
      val2 = newVal;
      lambda = std::max(tmpLambda,0.1*lambda);
      ++it;
    }
    // nothing was done
    //std::cerr<<"  RETURN AT END: "<<it<<" "<<resCode<<std::endl;
    for(unsigned int i=0;i<dim;i++){
      newPt[i]=oldPt[i];
    }
  }

#define CLEANUP() { delete [] grad; delete [] dGrad; delete [] hessDGrad;\
 delete [] newPos; delete [] xi; delete [] invHessian; }
  //! Do a BFGS minimization of a function.
  /*!
     See Numerical Recipes in C, Section 10.7 for a description of the algorithm.
    
     \param dim     the dimensionality of the space.
     \param pos   the starting position, as an array.
     \param gradTol tolerance for gradient convergence
     \param numIters used to return the number of iterations required
     \param funcVal  used to return the final function value
     \param func    the function to minimize
     \param gradFunc  calculates the gradient of func
     \param funcTol tolerance for changes in the function value for convergence.
     \param maxIts   maximum number of iterations allowed
    
     \return a flag indicating success (or type of failure). Possible values are:
      -  0: success
      -  1: too many iterations were required
  */
  template <typename EnergyFunctor,typename GradientFunctor>
  int minimize(unsigned int dim,double *pos,
               double gradTol,
               unsigned int &numIters,
               double &funcVal,
               EnergyFunctor func,
               GradientFunctor gradFunc,
               double funcTol=TOLX,
               unsigned int maxIts=MAXITS){
    PRECONDITION(pos,"bad input array");
    PRECONDITION(gradTol>0,"bad tolerance");

    double sum,maxStep,fp;

    double *grad,*dGrad,*hessDGrad;
    double *newPos,*xi;
    double *invHessian;

    grad = new double[dim];
    dGrad = new double[dim];
    hessDGrad = new double[dim];
    newPos = new double[dim];
    xi = new double[dim];
    invHessian = new double[dim*dim];

    // evaluate the function and gradient in our current position:
    fp=func(pos);
    gradFunc(pos,grad);

    sum = 0.0;
    memset(invHessian,0,dim*dim*sizeof(double));
    for(unsigned int i=0;i<dim;i++){
      unsigned int itab=i*dim;
      // initialize the inverse hessian to be identity:
      invHessian[itab+i]=1.0;
      // the first line dir is -grad:
      xi[i] = -grad[i];
      sum += pos[i]*pos[i];
    }
    // pick a max step size:
    maxStep = MAXSTEP * std::max(sqrt(sum),static_cast<double>(dim));


    for(unsigned int iter=1;iter<=maxIts;iter++){
      numIters=iter;
      int status;

      // do the line search:
      linearSearch(dim,pos,fp,grad,xi,newPos,funcVal,func,maxStep,status);
      CHECK_INVARIANT(status>=0,"bad direction in linearSearch");

      // save the function value for the next search:
      fp = funcVal;

      // set the direction of this line and save the gradient:
      double test=0.0;
      for(unsigned int i=0;i<dim;i++){
        xi[i] = newPos[i]-pos[i];
        pos[i] = newPos[i];
        double temp=fabs(xi[i])/std::max(fabs(pos[i]),1.0);
        if(temp>test) test=temp;
        dGrad[i] = grad[i];
      }
      //std::cerr<<"      iter: "<<iter<<" "<<fp<<" "<<test<<" "<<TOLX<<std::endl;
      if(test<TOLX) {
        CLEANUP();
        return 0;
      }

      // update the gradient:
      double gradScale=gradFunc(pos,grad);

      // is the gradient converged?
      test=0.0;
      double term=std::max(funcVal*gradScale,1.0);
      for(unsigned int i=0;i<dim;i++){
        double temp=fabs(grad[i])*std::max(fabs(pos[i]),1.0);
        test=std::max(test,temp);
        dGrad[i] = grad[i]-dGrad[i];
      }
      test /= term;
      //std::cerr<<"              "<<gradScale<<" "<<test<<" "<<gradTol<<std::endl;
      if(test<gradTol){
        CLEANUP();
        return 0;
      }

      //for(unsigned int i=0;i<dim;i++){
        // figure out how much the gradient changed:
      //}
    
      // compute hessian*dGrad:
      double fac=0,fae=0,sumDGrad=0,sumXi=0;
      for(unsigned int i=0;i<dim;i++){
        unsigned int itab=i*dim;
        hessDGrad[i] = 0.0;
        for(unsigned int j=0;j<dim;j++){
          hessDGrad[i] += invHessian[itab+j]*dGrad[j];
        }

        fac += dGrad[i]*xi[i];
        fae += dGrad[i]*hessDGrad[i];
        sumDGrad += dGrad[i]*dGrad[i];
        sumXi += xi[i]*xi[i];
      }
      if(fac > sqrt(EPS*sumDGrad*sumXi)){
        fac = 1.0/fac;
        double fad = 1.0/fae;
        for(unsigned int i=0;i<dim;i++){
          dGrad[i] = fac*xi[i] - fad*hessDGrad[i];
        }
        for(unsigned int i=0;i<dim;i++){
          unsigned int itab=i*dim;
          for(unsigned int j=i;j<dim;j++){
            invHessian[itab+j] += fac*xi[i]*xi[j] -
              fad*hessDGrad[i]*hessDGrad[j] +
              fae*dGrad[i]*dGrad[j];
            invHessian[j*dim+i] = invHessian[itab+j];
          }
        }
      }
      // generate the next direction to move:
      for(unsigned int i=0;i<dim;i++){
        unsigned int itab=i*dim;
        xi[i] = 0.0;
        for(unsigned int j=0;j<dim;j++){
          xi[i] -= invHessian[itab+j]*grad[j];
        }
      }
    }
    CLEANUP();
    return 1;
  }
}