This file is indexed.

/usr/include/root/Math/GenVector/LorentzVector.h is in libroot-math-genvector-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
// @(#)root/mathcore:$Id$
// Authors: W. Brown, M. Fischler, L. Moneta    2005  

/**********************************************************************
 *                                                                    *
 * Copyright (c) 2005 , LCG ROOT MathLib Team                         *
 *                                                                    *
 *                                                                    *
 **********************************************************************/

// Header file for class LorentzVector
//
// Created by:    moneta   at Tue May 31 17:06:09 2005
// Major mods by: fischler at Wed Jul 20   2005
//
// Last update: $Id$
//
#ifndef ROOT_Math_GenVector_LorentzVector 
#define ROOT_Math_GenVector_LorentzVector  1

#ifndef ROOT_Math_GenVector_PxPyPzE4D
#include "Math/GenVector/PxPyPzE4D.h"
#endif

#ifndef ROOT_Math_GenVector_DisplacementVector3D 
#include "Math/GenVector/DisplacementVector3D.h"
#endif

#ifndef ROOT_Math_GenVector_GenVectorIO
#include "Math/GenVector/GenVectorIO.h"
#endif



namespace ROOT {

  namespace Math {

//__________________________________________________________________________________________
    /**
        Class describing a generic LorentzVector in the 4D space-time,
        using the specified coordinate system for the spatial vector part.
        The metric used for the LorentzVector is (-,-,-,+).
        In the case of LorentzVector we don't distinguish the concepts
        of points and displacement vectors as in the 3D case,
        since the main use case for 4D Vectors is to describe the kinematics of
        relativistic particles. A LorentzVector behaves like a
        DisplacementVector in 4D.  The Minkowski components could be viewed as
        v and t, or for kinematic 4-vectors, as p and E.

     @ingroup GenVector
    */
    template< class CoordSystem >
    class LorentzVector {

    public:

       // ------ ctors ------

       typedef typename CoordSystem::Scalar Scalar;
       typedef CoordSystem CoordinateType;

       /**
          default constructor of an empty vector (Px = Py = Pz = E = 0 )
       */
       LorentzVector ( ) : fCoordinates() { }

       /**
          generic constructors from four scalar values.
          The association between values and coordinate depends on the
          coordinate system.  For PxPyPzE4D,
          \param a scalar value (Px)
          \param b scalar value (Py)
          \param c scalar value (Pz)
          \param d scalar value (E)
       */
       LorentzVector(const Scalar & a,
                     const Scalar & b,
                     const Scalar & c,
                     const Scalar & d) :
          fCoordinates(a , b,  c, d)  { }

       /**
          constructor from a LorentzVector expressed in different
          coordinates, or using a different Scalar type
       */
       template< class Coords >
       explicit LorentzVector(const LorentzVector<Coords> & v ) :
          fCoordinates( v.Coordinates() ) { }

       /**
          Construct from a foreign 4D vector type, for example, HepLorentzVector
          Precondition: v must implement methods x(), y(), z(), and t()
       */
       template<class ForeignLorentzVector>
       explicit LorentzVector( const ForeignLorentzVector & v) :
          fCoordinates(PxPyPzE4D<Scalar>( v.x(), v.y(), v.z(), v.t()  ) ) { }

#ifdef LATER
       /**
          construct from a generic linear algebra  vector implementing operator []
          and with a size of at least 4. This could be also a C array
          In this case v[0] is the first data member
          ( Px for a PxPyPzE4D base)
          \param v LA vector
          \param index0 index of first vector element (Px)
       */
       template< class LAVector >
       explicit LorentzVector(const LAVector & v, size_t index0 ) {
          fCoordinates = CoordSystem ( v[index0], v[index0+1], v[index0+2], v[index0+3] );
       }
#endif


       // ------ assignment ------

       /**
          Assignment operator from a lorentz vector of arbitrary type
       */
       template< class OtherCoords >
       LorentzVector & operator= ( const LorentzVector<OtherCoords> & v) {
          fCoordinates = v.Coordinates();
          return *this;
       }

       /**
          assignment from any other Lorentz vector  implementing
          x(), y(), z() and t()
       */
       template<class ForeignLorentzVector>
       LorentzVector & operator = ( const ForeignLorentzVector & v) {
          SetXYZT( v.x(), v.y(), v.z(), v.t() );
          return *this;
       }

#ifdef LATER
       /**
          assign from a generic linear algebra  vector implementing operator []
          and with a size of at least 4
          In this case v[0] is the first data member
          ( Px for a PxPyPzE4D base)
          \param v LA vector
          \param index0 index of first vector element (Px)
       */
       template< class LAVector >
       LorentzVector & AssignFrom(const LAVector & v, size_t index0=0 ) {
          fCoordinates.SetCoordinates( v[index0], v[index0+1], v[index0+2], v[index0+3] );
          return *this;
       }
#endif

       // ------ Set, Get, and access coordinate data ------

       /**
          Retrieve a const reference to  the coordinates object
       */
       const CoordSystem & Coordinates() const {
          return fCoordinates;
       }

       /**
          get internal data into 4 Scalar numbers
       */
       void GetCoordinates( Scalar& a, Scalar& b, Scalar& c, Scalar & d ) const
       { fCoordinates.GetCoordinates(a, b, c, d);  }

       /**
          get internal data into an array of 4 Scalar numbers
       */
       void GetCoordinates( Scalar dest[] ) const
       { fCoordinates.GetCoordinates(dest);  }

       /**
          get internal data into 4 Scalars at *begin to *end
       */
       template <class IT>
#ifndef NDEBUG 
       void GetCoordinates( IT begin, IT end ) const
#else
       void GetCoordinates( IT begin, IT /* end */ ) const
#endif
       { IT a = begin; IT b = ++begin; IT c = ++begin; IT d = ++begin;
       assert (++begin==end);
       GetCoordinates (*a,*b,*c,*d);
       }

       /**
          get internal data into 4 Scalars at *begin 
       */
       template <class IT>
       void GetCoordinates( IT begin ) const { 
          Scalar a,b,c,d = 0; 
          GetCoordinates (a,b,c,d);
          *begin++ = a; 
          *begin++ = b; 
          *begin++ = c; 
          *begin   = d; 
       }

       /**
          Set internal data based on an array of 4 Scalar numbers
       */
       LorentzVector<CoordSystem>& SetCoordinates( const Scalar src[] ) { 
          fCoordinates.SetCoordinates(src);  
          return *this;
       }

       /**
          Set internal data based on 4 Scalar numbers
       */
       LorentzVector<CoordSystem>& SetCoordinates( Scalar a, Scalar b, Scalar c, Scalar d ) {
          fCoordinates.SetCoordinates(a, b, c, d);  
          return *this;
       }

       /**
          Set internal data based on 4 Scalars at *begin to *end
       */
//    Here it is needed to re-implement all the function for CINT , otherwise dictionary generation will fail 
//    for unknown reasons if we do as for GetCoordinates (fortunatly we will remove this in ROOT 6!)
#ifdef NDEBUG
        template< class IT >
        LorentzVector<CoordSystem>& SetCoordinates( IT begin, IT /*end*/   ) {
          IT a = begin; IT b = ++begin; IT c = ++begin; IT d = ++begin;
          assert (++begin==end);
          SetCoordinates (*a,*b,*c,*d);
          return *this;
       }
#else
        template< class IT >
        LorentzVector<CoordSystem>& SetCoordinates( IT begin, IT end   ) {
          IT a = begin; IT b = ++begin; IT c = ++begin; IT d = ++begin;
          assert (++begin==end);
          SetCoordinates (*a,*b,*c,*d);
          return *this;
       }
#endif

       /**
          set the values of the vector from the cartesian components (x,y,z,t)
          (if the vector is held in another coordinates, like (Pt,eta,phi,m)
          then (x, y, z, t) are converted to that form)
       */
       LorentzVector<CoordSystem>& SetXYZT (Scalar xx, Scalar yy, Scalar zz, Scalar tt) {
          fCoordinates.SetPxPyPzE(xx,yy,zz,tt);
          return *this;
       }
       LorentzVector<CoordSystem>& SetPxPyPzE (Scalar xx, Scalar yy, Scalar zz, Scalar ee) {
          fCoordinates.SetPxPyPzE(xx,yy,zz,ee);
          return *this;
       }

       // ------------------- Equality -----------------

       /**
          Exact equality
       */
       bool operator==(const LorentzVector & rhs) const {
          return fCoordinates==rhs.fCoordinates;
       }
       bool operator!= (const LorentzVector & rhs) const {
          return !(operator==(rhs));
       }

       // ------ Individual element access, in various coordinate systems ------

       // individual coordinate accessors in various coordinate systems

       /**
          spatial X component
       */
       Scalar Px() const  { return fCoordinates.Px(); }
       Scalar X()  const  { return fCoordinates.Px(); }
       /**
          spatial Y component
       */
       Scalar Py() const { return fCoordinates.Py(); }
       Scalar Y()  const { return fCoordinates.Py(); }
       /**
          spatial Z component
       */
       Scalar Pz() const { return fCoordinates.Pz(); }
       Scalar Z()  const { return fCoordinates.Pz(); }
       /**
          return 4-th component (time, or energy for a 4-momentum vector)
       */
       Scalar E()  const { return fCoordinates.E(); }
       Scalar T()  const { return fCoordinates.E(); }
       /**
          return magnitude (mass) squared  M2 = T**2 - X**2 - Y**2 - Z**2
          (we use -,-,-,+ metric)
       */
       Scalar M2()   const { return fCoordinates.M2(); }
       /**
          return magnitude (mass) using the  (-,-,-,+)  metric.
          If M2 is negative (space-like vector) a GenVector_exception
          is suggested and if continuing, - sqrt( -M2) is returned
       */
       Scalar M() const    { return fCoordinates.M();}
       /**
          return the spatial (3D) magnitude ( sqrt(X**2 + Y**2 + Z**2) )
       */
       Scalar R() const { return fCoordinates.R(); }
       Scalar P() const { return fCoordinates.R(); }
       /**
          return the square of the spatial (3D) magnitude ( X**2 + Y**2 + Z**2 )
       */
       Scalar P2() const { return P() * P(); }
       /**
          return the square of the transverse spatial component ( X**2 + Y**2 )
       */
       Scalar Perp2( ) const { return fCoordinates.Perp2();}

       /**
          return the  transverse spatial component sqrt ( X**2 + Y**2 )
       */
       Scalar Pt()  const { return fCoordinates.Pt(); }
       Scalar Rho() const { return fCoordinates.Pt(); }

       /**
          return the transverse mass squared
          \f[ m_t^2 = E^2 - p{_z}^2 \f]
       */
       Scalar Mt2() const { return fCoordinates.Mt2(); }

       /**
          return the transverse mass
          \f[ \sqrt{ m_t^2 = E^2 - p{_z}^2} X sign(E^ - p{_z}^2) \f]
       */
       Scalar Mt() const { return fCoordinates.Mt(); }

       /**
          return the transverse energy squared
          \f[ e_t = \frac{E^2 p_{\perp}^2 }{ |p|^2 } \f]
       */
       Scalar Et2() const { return fCoordinates.Et2(); }

       /**
          return the transverse energy
          \f[ e_t = \sqrt{ \frac{E^2 p_{\perp}^2 }{ |p|^2 } } X sign(E) \f]
       */
       Scalar Et() const { return fCoordinates.Et(); }

       /**
          azimuthal  Angle
       */
       Scalar Phi() const  { return fCoordinates.Phi();}

       /**
          polar Angle
       */
       Scalar Theta() const { return fCoordinates.Theta(); }

       /**
          pseudorapidity
          \f[ \eta = - \ln { \tan { \frac { \theta} {2} } } \f]
       */
       Scalar Eta() const { return fCoordinates.Eta(); }

       /**
          get the spatial components of the Vector in a
          DisplacementVector based on Cartesian Coordinates
       */
       ::ROOT::Math::DisplacementVector3D<Cartesian3D<Scalar> > Vect() const {
          return ::ROOT::Math::DisplacementVector3D<Cartesian3D<Scalar> >( X(), Y(), Z() );
       }

       // ------ Operations combining two Lorentz vectors ------

       /**
          scalar (Dot) product of two LorentzVector vectors (metric is -,-,-,+)
          Enable the product using any other LorentzVector implementing
          the x(), y() , y() and t() member functions
          \param  q  any LorentzVector implementing the x(), y() , z() and t()
          member functions
          \return the result of v.q of type according to the base scalar type of v
       */

       template< class OtherLorentzVector >
       Scalar Dot(const OtherLorentzVector & q) const {
          return t()*q.t() - x()*q.x() - y()*q.y() - z()*q.z();
       }

       /**
          Self addition with another Vector ( v+= q )
          Enable the addition with any other LorentzVector
          \param  q  any LorentzVector implementing the x(), y() , z() and t()
          member functions
       */
      template< class OtherLorentzVector >
      inline LorentzVector & operator += ( const OtherLorentzVector & q)
       {
          SetXYZT( x() + q.x(), y() + q.y(), z() + q.z(), t() + q.t()  );
          return *this;
       }

       /**
          Self subtraction of another Vector from this ( v-= q )
          Enable the addition with any other LorentzVector
          \param  q  any LorentzVector implementing the x(), y() , z() and t()
          member functions
       */
       template< class OtherLorentzVector >
       LorentzVector & operator -= ( const OtherLorentzVector & q) {
          SetXYZT( x() - q.x(), y() - q.y(), z() - q.z(), t() - q.t()  );
          return *this;
       }

       /**
          addition of two LorentzVectors (v3 = v1 + v2)
          Enable the addition with any other LorentzVector
          \param  v2  any LorentzVector implementing the x(), y() , z() and t()
          member functions
          \return a new LorentzVector of the same type as v1
       */
       template<class OtherLorentzVector>
       LorentzVector  operator +  ( const OtherLorentzVector & v2) const 
       {
          LorentzVector<CoordinateType> v3(*this);
          v3 += v2;
          return v3;
       }

       /**
          subtraction of two LorentzVectors (v3 = v1 - v2)
          Enable the subtraction of any other LorentzVector
          \param  v2  any LorentzVector implementing the x(), y() , z() and t()
          member functions
          \return a new LorentzVector of the same type as v1
       */
       template<class OtherLorentzVector>
       LorentzVector  operator -  ( const OtherLorentzVector & v2) const {
          LorentzVector<CoordinateType> v3(*this);
          v3 -= v2;
          return v3;
       }

       //--- scaling operations ------

       /**
          multiplication by a scalar quantity v *= a
       */
       LorentzVector & operator *= (Scalar a) {
          fCoordinates.Scale(a);
          return *this;
       }

       /**
          division by a scalar quantity v /= a
       */
       LorentzVector & operator /= (Scalar a) {
          fCoordinates.Scale(1/a);
          return *this;
       }

       /**
          product of a LorentzVector by a scalar quantity
          \param a  scalar quantity of type a
          \return a new mathcoreLorentzVector q = v * a same type as v
       */
       LorentzVector operator * ( const Scalar & a) const {
          LorentzVector tmp(*this);
          tmp *= a;
          return tmp;
       }

       /**
          Divide a LorentzVector by a scalar quantity
          \param a  scalar quantity of type a
          \return a new mathcoreLorentzVector q = v / a same type as v
       */
       LorentzVector<CoordSystem> operator / ( const Scalar & a) const {
          LorentzVector<CoordSystem> tmp(*this);
          tmp /= a;
          return tmp;
       }

       /**
          Negative of a LorentzVector (q = - v )
          \return a new LorentzVector with opposite direction and time
       */
       LorentzVector operator - () const {
          //LorentzVector<CoordinateType> v(*this);
          //v.Negate();
          return operator*( Scalar(-1) );
       }
       LorentzVector operator + () const {
          return *this;
       }

       // ---- Relativistic Properties ----

       /**
          Rapidity relative to the Z axis:  .5 log [(E+Pz)/(E-Pz)]
       */
       Scalar Rapidity() const {
          // TODO - It would be good to check that E > Pz and use the Throw()
          //        mechanism or at least load a NAN if not.
          //        We should then move the code to a .cpp file.
          Scalar ee = E();
          Scalar ppz = Pz();
          return .5f* std::log( (ee+ppz)/(ee-ppz) );
       }

       /**
          Rapidity in the direction of travel: atanh (|P|/E)=.5 log[(E+P)/(E-P)]
       */
       Scalar ColinearRapidity() const {
          // TODO - It would be good to check that E > P and use the Throw()
          //        mechanism or at least load a NAN if not.
          Scalar ee = E();
          Scalar pp = P();
          return .5f* std::log( (ee+pp)/(ee-pp) );
       }

       /**
          Determine if momentum-energy can represent a physical massive particle
       */
       bool isTimelike( ) const {
          Scalar ee = E(); Scalar pp = P(); return ee*ee > pp*pp;
       }

       /**
          Determine if momentum-energy can represent a massless particle
       */
       bool isLightlike( Scalar tolerance
                         = 100*std::numeric_limits<Scalar>::epsilon() ) const {
          Scalar ee = E(); Scalar pp = P(); Scalar delta = ee-pp;
          if ( ee==0 ) return pp==0;
          return delta*delta < tolerance * ee*ee;
       }

       /**
          Determine if momentum-energy is spacelike, and represents a tachyon
       */
       bool isSpacelike( ) const {
          Scalar ee = E(); Scalar pp = P(); return ee*ee < pp*pp;
       }

       typedef DisplacementVector3D< Cartesian3D<Scalar> > BetaVector;

       /**
          The beta vector for the boost that would bring this vector into
          its center of mass frame (zero momentum)
       */
       BetaVector BoostToCM( ) const {
          if (E() == 0) {
             if (P() == 0) {
                return BetaVector();
             } else {
                // TODO - should attempt to Throw with msg about
                // boostVector computed for LorentzVector with t=0
                return -Vect()/E();
             }
          }
          if (M2() <= 0) {
             // TODO - should attempt to Throw with msg about
             // boostVector computed for a non-timelike LorentzVector
          }
          return -Vect()/E();
       }

       /**
          The beta vector for the boost that would bring this vector into
          its center of mass frame (zero momentum)
       */
       template <class Other4Vector>
       BetaVector BoostToCM(const Other4Vector& v ) const {
          Scalar eSum = E() + v.E();
          DisplacementVector3D< Cartesian3D<Scalar> > vecSum = Vect() + v.Vect();
          if (eSum == 0) {
             if (vecSum.Mag2() == 0) {
                return BetaVector();
             } else {
                // TODO - should attempt to Throw with msg about
                // boostToCM computed for two 4-vectors with combined t=0
                return BetaVector(vecSum/eSum);
             }
             // TODO - should attempt to Throw with msg about
             // boostToCM computed for two 4-vectors with combined e=0
          }
          return BetaVector (vecSum * (-1./eSum));
       }
      
       //beta and gamma

       /** 
           Return beta scalar value
       */
       Scalar Beta() const { 
          if ( E() == 0 ) { 
             if ( P2() == 0)
                // to avoid Nan 
                return 0; 
             else { 
                GenVector::Throw ("LorentzVector::Beta() - beta computed for LorentzVector with t = 0. Return an Infinite result");
                return 1./E();
             }
          }
          if ( M2() <= 0 ) {     
             GenVector::Throw ("LorentzVector::Beta() - beta computed for non-timelike LorentzVector . Result is physically meaningless" );
          }  
          return P() / E();
       }  
       /** 
           Return Gamma scalar value
       */
       Scalar Gamma() const { 
          Scalar v2 = P2();
          Scalar t2 = E()*E();
          if (E() == 0) {
             if ( P2() == 0) {
                return 1;
             } else {
                GenVector::Throw ("LorentzVector::Gamma() - gamma computed for LorentzVector with t = 0. Return a zero result");

             }
          }
          if ( t2 < v2 ) { 
             GenVector::Throw ("LorentzVector::Gamma() - gamma computed for a spacelike LorentzVector. Imaginary result");
             return 0;
          }
          else if ( t2 == v2 ) {
             GenVector::Throw ("LorentzVector::Gamma() - gamma computed for a lightlike LorentzVector. Infinite result");
          }
          return 1./std::sqrt(1. - v2/t2 );
       } /* gamma */


       // Method providing limited backward name compatibility with CLHEP ----

       Scalar x()     const { return fCoordinates.Px();     }
       Scalar y()     const { return fCoordinates.Py();     }
       Scalar z()     const { return fCoordinates.Pz();     }
       Scalar t()     const { return fCoordinates.E();      }
       Scalar px()    const { return fCoordinates.Px();     }
       Scalar py()    const { return fCoordinates.Py();     }
       Scalar pz()    const { return fCoordinates.Pz();     }
       Scalar e()     const { return fCoordinates.E();      }
       Scalar r()     const { return fCoordinates.R();      }
       Scalar theta() const { return fCoordinates.Theta();  }
       Scalar phi()   const { return fCoordinates.Phi();    }
       Scalar rho()   const { return fCoordinates.Rho();    }
       Scalar eta()   const { return fCoordinates.Eta();    }
       Scalar pt()    const { return fCoordinates.Pt();     }
       Scalar perp2() const { return fCoordinates.Perp2();  }
       Scalar mag2()  const { return fCoordinates.M2();     }
       Scalar mag()   const { return fCoordinates.M();      }
       Scalar mt()    const { return fCoordinates.Mt();     }
       Scalar mt2()   const { return fCoordinates.Mt2();    }
 

       // Methods  requested by CMS ---
       Scalar energy() const { return fCoordinates.E();      }
       Scalar mass()   const { return fCoordinates.M();      }
       Scalar mass2()  const { return fCoordinates.M2();     }   


       /**
          Methods setting a Single-component
          Work only if the component is one of which the vector is represented. 
          For example SetE will work for a PxPyPzE Vector but not for a PxPyPzM Vector.  
       */
       LorentzVector<CoordSystem>& SetE  ( Scalar a )  { fCoordinates.SetE  (a); return *this; }
       LorentzVector<CoordSystem>& SetEta( Scalar a )  { fCoordinates.SetEta(a); return *this; }
       LorentzVector<CoordSystem>& SetM  ( Scalar a )  { fCoordinates.SetM  (a); return *this; }
       LorentzVector<CoordSystem>& SetPhi( Scalar a )  { fCoordinates.SetPhi(a); return *this; }
       LorentzVector<CoordSystem>& SetPt ( Scalar a )  { fCoordinates.SetPt (a); return *this; }
       LorentzVector<CoordSystem>& SetPx ( Scalar a )  { fCoordinates.SetPx (a); return *this; }
       LorentzVector<CoordSystem>& SetPy ( Scalar a )  { fCoordinates.SetPy (a); return *this; }
       LorentzVector<CoordSystem>& SetPz ( Scalar a )  { fCoordinates.SetPz (a); return *this; }

    private:

       CoordSystem  fCoordinates;    // internal coordinate system


    };  // LorentzVector<>



  // global nethods

  /**
     Scale of a LorentzVector with a scalar quantity a
     \param a  scalar quantity of typpe a
     \param v  mathcore::LorentzVector based on any coordinate system
     \return a new mathcoreLorentzVector q = v * a same type as v
   */
    template< class CoordSystem >
    inline LorentzVector<CoordSystem> operator *
    ( const typename  LorentzVector<CoordSystem>::Scalar & a,
      const LorentzVector<CoordSystem>& v) {
       LorentzVector<CoordSystem> tmp(v);
       tmp *= a;
       return tmp;
    }
     
    // ------------- I/O to/from streams -------------

    template< class char_t, class traits_t, class Coords >
    inline
    std::basic_ostream<char_t,traits_t> &
    operator << ( std::basic_ostream<char_t,traits_t> & os
                  , LorentzVector<Coords> const & v
       )
    {
       if( !os )  return os;
       
       typename Coords::Scalar a, b, c, d;
       v.GetCoordinates(a, b, c, d);
       
       if( detail::get_manip( os, detail::bitforbit ) )  {
        detail::set_manip( os, detail::bitforbit, '\00' );
        // TODO: call MF's bitwise-accurate functions on each of a, b, c, d
       }
       else  {
          os << detail::get_manip( os, detail::open  ) << a
             << detail::get_manip( os, detail::sep   ) << b
             << detail::get_manip( os, detail::sep   ) << c
             << detail::get_manip( os, detail::sep   ) << d
             << detail::get_manip( os, detail::close );
       }
       
       return os;
       
    }  // op<< <>()
     

     template< class char_t, class traits_t, class Coords >
     inline
     std::basic_istream<char_t,traits_t> &
     operator >> ( std::basic_istream<char_t,traits_t> & is
                   , LorentzVector<Coords> & v
        )
     {
        if( !is )  return is;
        
        typename Coords::Scalar a, b, c, d;
        
        if( detail::get_manip( is, detail::bitforbit ) )  {
           detail::set_manip( is, detail::bitforbit, '\00' );
           // TODO: call MF's bitwise-accurate functions on each of a, b, c
        }
        else  {
           detail::require_delim( is, detail::open  );  is >> a;
           detail::require_delim( is, detail::sep   );  is >> b;
           detail::require_delim( is, detail::sep   );  is >> c;
           detail::require_delim( is, detail::sep   );  is >> d;
           detail::require_delim( is, detail::close );
        }
        
        if( is )
           v.SetCoordinates(a, b, c, d);
        return is;
        
     }  // op>> <>()
     


  } // end namespace Math

} // end namespace ROOT



#endif

//#include "Math/GenVector/LorentzVectorOperations.h"