This file is indexed.

/usr/include/root/Math/GenVector/Plane3D.h is in libroot-math-genvector-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// @(#)root/mathcore:$Id$
// Authors: L. Moneta    12/2005  

/**********************************************************************
 *                                                                    *
 * Copyright (c) 2005 , LCG ROOT MathLib Team                         *
 *                                                                    *
 *                                                                    *
 **********************************************************************/

// Header file for class LorentzVector
//
// Created by:    moneta   at Fri Dec 02   2005
//
// Last update: $Id$
//
#ifndef ROOT_Math_GenVector_Plane3D
#define ROOT_Math_GenVector_Plane3D  1

#include "Math/GenVector/DisplacementVector3D.h"
#include "Math/GenVector/PositionVector3D.h"



namespace ROOT {

namespace Math {



//_______________________________________________________________________________
   /**
      Class describing a geometrical plane in 3 dimensions. 
      A Plane3D is a 2 dimensional surface spanned by two linearly independent vectors.  
      The plane is described by the equation 
      \f$ a*x + b*y + c*z + d = 0 \f$ where (a,b,c) are the components of the 
      normal vector to the plane \f$ n = (a,b,c)  \f$ and \f$ d = - n \dot x \f$, where x is any point 
      belonging to plane. 
      More information on the mathematics describing a plane in 3D is available on 
      <A HREF=http://mathworld.wolfram.com/Plane.html>MathWord</A>.
      The Plane3D class contains the 4 scalar values in double which represent the 
      four coefficients, fA, fB, fC, fD. fA, fB, fC are the normal components normalized to 1, 
      i.e. fA**2 + fB**2 + fC**2 = 1
      
      @ingroup GenVector
   */
   class Plane3D {

   public:

      // ------ ctors ------

      typedef double Scalar;

      typedef  DisplacementVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag > Vector; 
      typedef  PositionVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag >     Point; 



      /**
         default constructor create plane z = 0 
      */
      Plane3D ( ) : fA(0), fB(0), fC(1.), fD(0) { }

      /**
       generic constructors from the four scalar values describing the plane
       according to the equation ax + by + cz + d = 0
         \param a scalar value 
         \param b scalar value 
         \param c scalar value 
         \param d sxcalar value 
      */
      Plane3D(const Scalar & a, const Scalar & b, const Scalar & c, const Scalar & d);

      /**
       constructor a Plane3D from a normal vector and a point coplanar to the plane
       \param n normal expressed as a ROOT::Math::DisplacementVector3D<Cartesian3D<double> >
       \param p point  expressed as a  ROOT::Math::PositionVector3D<Cartesian3D<double> >
      */
      Plane3D(const Vector & n, const Point & p ) 
      {
         BuildFromVecAndPoint( n, p );
      }
       

      /**
       Construct from a generic DisplacementVector3D (normal vector) and PositionVector3D (point coplanar to
       the plane)
       \param n normal expressed as a generic ROOT::Math::DisplacementVector3D
       \param p point  expressed as a generic ROOT::Math::PositionVector3D
      */
      template<class T1, class T2, class U>
      Plane3D( const  DisplacementVector3D<T1,U> & n, const  PositionVector3D<T2,U> & p)  
      {
         BuildFromVecAndPoint( Vector(n), Point(p) );
      }

      /**
       constructor from three Cartesian point belonging to the plane
       \param p1 point1  expressed as a generic ROOT::Math::PositionVector3D
       \param p2 point2  expressed as a generic ROOT::Math::PositionVector3D
       \param p3 point3  expressed as a generic ROOT::Math::PositionVector3D
      */
      Plane3D(const Point & p1, const Point & p2, const Point & p3  ) { 
         BuildFrom3Points(p1,p2,p3);
      }

      /**
       constructor from three generic point belonging to the plane
       \param p1 point1 expressed as  ROOT::Math::DisplacementVector3D<Cartesian3D<double> >
       \param p2 point2 expressed as  ROOT::Math::DisplacementVector3D<Cartesian3D<double> >
       \param p3 point3 expressed as  ROOT::Math::DisplacementVector3D<Cartesian3D<double> >
      */
      template <class T1, class T2, class T3, class U>
      Plane3D(const  PositionVector3D<T1,U> & p1, const  PositionVector3D<T2,U> & p2, const  PositionVector3D<T3,U> & p3  )  
      {
         BuildFrom3Points( Point(p1.X(), p1.Y(), p1.Z()),  
                           Point(p2.X(), p2.Y(), p2.Z()),  
                           Point(p3.X(), p3.Y(), p3.Z()) ); 
      } 



      // compiler-generated copy ctor and dtor are fine.

      // ------ assignment ------

      /**
         Assignment operator from other Plane3D class 
      */
      Plane3D & operator= ( const Plane3D & plane) {
         fA = plane.fA;
         fB = plane.fB;
         fC = plane.fC;
         fD = plane.fD;
         return *this;
      }

      /**
         Return the a coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the  
         x-component of the vector perpendicular to the plane. 
      */ 
      Scalar A() { return fA; }

      /**
         Return the b coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the 
         y-component of the vector perpendicular to the plane  
      */ 
      Scalar B() { return fB; }

      /**
         Return the c coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the
         z-component of the vector perpendicular to the plane  
      */ 
      Scalar C() { return fC; }

      /**
         Return the d coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also 
         the distance from the origin (HesseDistance)
      */ 
      Scalar D() { return fD; }

      /**
         Return normal vector to the plane as Cartesian DisplacementVector 
      */
      Vector Normal() const {
         return Vector(fA, fB, fC);
      }

      /** 
       Return the Hesse Distance (distance from the origin) of the plane or
       the d coefficient expressed in normalize form
      */
      Scalar HesseDistance() const { 
         return fD; 
      }


      /**
       Return the signed distance to a Point.
       The distance is signed positive if the Point is in the same side of the
       normal vector to the plane.
       \param p Point expressed in Cartesian Coordinates
       */
      Scalar Distance(const Point & p) const;

      /**
       Return the distance to a Point described with generic coordinates
       \param p Point expressed as generic ROOT::Math::PositionVector3D
       */
      template <class T, class U>
      Scalar Distance(const PositionVector3D<T,U> & p) const {
         return Distance( Point(p.X(), p.Y(), p.Z() ) );
      }

      /**
       Return the projection of a Cartesian point to a plane
       \param p Point expressed as PositionVector3D<Cartesian3D<double> >
       */
      Point ProjectOntoPlane(const Point & p) const;

      /**
       Return the projection of a point to a plane
       \param p Point expressed as generic ROOT::Math::PositionVector3D
       */
      template <class T, class U>
      PositionVector3D<T,U> ProjectOntoPlane(const PositionVector3D<T,U> & p) const {
         Point pxyz = ProjectOntoPlane(Point(p.X(), p.Y(), p.Z() ) );
         PositionVector3D<T,U> p2;
         p2.SetXYZ( pxyz.X(), pxyz.Y(), pxyz.Z() );
         return p2;
      }
      
      

      // ------------------- Equality -----------------

      /**
         Exact equality
      */
      bool operator==(const Plane3D & rhs) const {
         return  fA  == rhs.fA &&  fB == rhs.fB  &&  fC == rhs.fC && fD == rhs.fD;
      }
      bool operator!= (const Plane3D & rhs) const {
         return !(operator==(rhs));
      }

   protected: 

      /**
         Normalize the normal (a,b,c) plane components
      */
      void Normalize(); 


   private:

      // internal method to construct class from a vector and a point
      void BuildFromVecAndPoint(const Vector & n, const Point & p); 
      // internal method to construct class from 3 points
      void BuildFrom3Points(const Point & p1, const Point & p2, const Point & p3);

      // plane data members the four scalar which  satisfies fA*x + fB*y + fC*z + fD = 0
      // for every point (x,y,z) belonging to the plane.
      // fA**2 + fB**2 + fC** =1 plane is stored in normalized form
      Scalar  fA;
      Scalar  fB;
      Scalar  fC;
      Scalar  fD;


   };  // Plane3D<>

   /**
      Stream Output and Input
   */
   // TODO - I/O should be put in the manipulator form 
    
   std::ostream & operator<< (std::ostream & os, const Plane3D & p);
  
   
} // end namespace Math
  
} // end namespace ROOT


#endif