This file is indexed.

/usr/include/root/Math/GenVector/PositionVector3D.h is in libroot-math-genvector-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
// @(#)root/mathcore:$Id$
// Authors: W. Brown, M. Fischler, L. Moneta    2005  

 /**********************************************************************
  *                                                                    *
  * Copyright (c) 2005 , LCG ROOT MathLib Team                         *
  *                                                                    *
  *                                                                    *
  **********************************************************************/

// Header file for class PositionVector3D
//
// Created by: Lorenzo Moneta  at Mon May 30 15:25:04 2005
//
// Last update: $Id$
//
#ifndef ROOT_Math_GenVector_PositionVector3D 
#define ROOT_Math_GenVector_PositionVector3D  1

#ifndef ROOT_Math_GenVector_DisplacementVector3Dfwd 
#include "Math/GenVector/DisplacementVector3Dfwd.h"
#endif

#ifndef ROOT_Math_GenVector_Cartesian3D 
#include "Math/GenVector/Cartesian3D.h"
#endif

#ifndef ROOT_Math_GenVector_GenVectorIO
#include "Math/GenVector/GenVectorIO.h"
#endif

#ifndef ROOT_Math_GenVector_BitReproducible 
#include "Math/GenVector/BitReproducible.h"
#endif

#ifndef ROOT_Math_GenVector_CoordinateSystemTags 
#include "Math/GenVector/CoordinateSystemTags.h"
#endif


#include <cassert>

namespace ROOT {

  namespace Math {


//__________________________________________________________________________________________
    /**
     Class describing a generic position vector (point) in 3 dimensions.
     This class is templated on the type of Coordinate system.
     One example is the XYZPoint which is a vector based on
     double precision x,y,z data members by using the
     ROOT::Math::Cartesian3D<double> Coordinate system.
     The class is having also an extra template parameter, the coordinate system tag,
     to be able to identify (tag) vector described in different reference coordinate system,
     like global or local coordinate systems.

     @ingroup GenVector
    */

    template <class CoordSystem, class Tag = DefaultCoordinateSystemTag >
    class PositionVector3D {

    public:

      typedef typename CoordSystem::Scalar Scalar;
      typedef CoordSystem CoordinateType;
      typedef Tag  CoordinateSystemTag;

      // ------ ctors ------

      /**
         Default constructor. Construct an empty object with zero values
      */

      PositionVector3D() : fCoordinates() { }

      /**
         Construct from three values of type <em>Scalar</em>.
         In the case of a XYZPoint the values are x,y,z
         In the case of  a polar vector they are r,theta,phi
      */
      PositionVector3D(const Scalar & a, const Scalar & b, const Scalar & c) :
        fCoordinates ( a , b,  c)  { }

     /**
          Construct from a position vector expressed in different
          coordinates, or using a different Scalar type
      */
      template <class T>
      explicit PositionVector3D( const PositionVector3D<T,Tag> & v) :
        fCoordinates ( v.Coordinates() ) { }

     /**
          Construct from an arbitrary displacement vector
      */
      template <class T>
      explicit PositionVector3D( const DisplacementVector3D<T,Tag> & p) :
        fCoordinates ( p.Coordinates() ) { }

      /**
          Construct from a foreign 3D vector type, for example, Hep3Vector
          Precondition: v must implement methods x(), y() and z()
      */
      template <class ForeignVector>
      explicit PositionVector3D( const ForeignVector & v) :
        fCoordinates ( Cartesian3D<Scalar>( v.x(), v.y(), v.z() ) ) { }

#ifdef LATER
      /**
         construct from a generic linear algebra  vector of at least size 3
         implementing operator []. This could be also a C array
         \par v  LAVector
         \par index0   index where coordinates starts (typically zero)
         It works for all Coordinates types,
         ( x= v[index0] for Cartesian and r=v[index0] for Polar )
      */
      template <class LAVector>
      PositionVector3D(const LAVector & v, size_t index0 ) {
        fCoordinates = CoordSystem  ( v[index0], v[index0+1], v[index0+2] );
      }
#endif

      // compiler-generated copy ctor and dtor are fine.

      // ------ assignment ------

      /**
          Assignment operator from a position vector of arbitrary type
      */
      template <class OtherCoords>
      PositionVector3D & operator=
                        ( const PositionVector3D<OtherCoords,Tag> & v) {
        fCoordinates = v.Coordinates();
        return *this;
      }

      /**
          Assignment operator from a displacement vector of arbitrary type
      */
      template <class OtherCoords>
      PositionVector3D & operator=
                        ( const DisplacementVector3D<OtherCoords,Tag> & v) {
        fCoordinates = v.Coordinates();
        return *this;
      }

      /**
          Assignment from a foreign 3D vector type, for example, Hep3Vector
          Precondition: v must implement methods x(), y() and z()
      */
      template <class ForeignVector>
      PositionVector3D & operator= ( const ForeignVector & v) {
        SetXYZ( v.x(),  v.y(), v.z() );
        return *this;
      }

#ifdef LATER
      /**
         assign from a generic linear algebra  vector of at least size 3
         implementing operator [].
         \par v  LAVector
         \par index0   index where coordinates starts (typically zero)
         It works for all Coordinates types,
         ( x= v[index0] for Cartesian and r=v[index0] for Polar )
      */
      template <class LAVector>
      PositionVector3D & assignFrom(const LAVector & v, size_t index0 = 0) {
        fCoordinates = CoordSystem  ( v[index0], v[index0+1], v[index0+2] );
        return *this;
      }
#endif

      /**
          Retrieve a copy of the coordinates object
      */
      const CoordSystem & Coordinates() const {
        return fCoordinates;
      }

      /**
         Set internal data based on a C-style array of 3 Scalar numbers
       */
      PositionVector3D<CoordSystem, Tag>& SetCoordinates( const Scalar src[] )
       { fCoordinates.SetCoordinates(src); return *this;  }

      /**
         Set internal data based on 3 Scalar numbers
       */
      PositionVector3D<CoordSystem, Tag>& SetCoordinates( Scalar a, Scalar b, Scalar c )
       { fCoordinates.SetCoordinates(a, b, c); return *this; }

      /**
         Set internal data based on 3 Scalars at *begin to *end
       */
      template <class IT>
#ifndef NDEBUG 
      PositionVector3D<CoordSystem, Tag>& SetCoordinates( IT begin, IT end ) 
#else
      PositionVector3D<CoordSystem, Tag>& SetCoordinates( IT begin, IT /* end */ ) 
#endif
      { IT a = begin; IT b = ++begin; IT c = ++begin;
        assert (++begin==end);
        SetCoordinates (*a,*b,*c);
        return *this;
      }

      /**
        get internal data into 3 Scalar numbers
       */
      void GetCoordinates( Scalar& a, Scalar& b, Scalar& c ) const
                            { fCoordinates.GetCoordinates(a, b, c);  }

      /**
         get internal data into a C-style array of 3 Scalar numbers
       */
      void GetCoordinates( Scalar dest[] ) const
                            { fCoordinates.GetCoordinates(dest);  }

      /**
         get internal data into 3 Scalars at *begin to *end (3 past begin)
       */
      template <class IT>
#ifndef NDEBUG 
      void GetCoordinates( IT begin, IT end ) const
#else
      void GetCoordinates( IT begin, IT /* end */ ) const
#endif
      { IT a = begin; IT b = ++begin; IT c = ++begin;
        assert (++begin==end);
        GetCoordinates (*a,*b,*c);
      }

      /**
         get internal data into 3 Scalars at *begin
       */
      template <class IT>
      void GetCoordinates( IT begin ) const {
         Scalar a,b,c = 0; 
         GetCoordinates (a,b,c);
         *begin++ = a; 
         *begin++ = b; 
         *begin   = c; 
      }

      /**
         set the values of the vector from the cartesian components (x,y,z)
         (if the vector is held in polar or cylindrical eta coordinates,
         then (x, y, z) are converted to that form)
       */
      PositionVector3D<CoordSystem, Tag>& SetXYZ (Scalar a, Scalar b, Scalar c) {
            fCoordinates.SetXYZ(a,b,c);
            return *this;
      }

      // ------------------- Equality -----------------

      /**
        Exact equality
       */
      bool operator==(const PositionVector3D & rhs) const {
        return fCoordinates==rhs.fCoordinates;
      }
      bool operator!= (const PositionVector3D & rhs) const {
        return !(operator==(rhs));
      }

      // ------ Individual element access, in various coordinate systems ------

      /**
          Cartesian X, converting if necessary from internal coordinate system.
      */
      Scalar X() const { return fCoordinates.X(); }

      /**
          Cartesian Y, converting if necessary from internal coordinate system.
      */
      Scalar Y() const { return fCoordinates.Y(); }

      /**
          Cartesian Z, converting if necessary from internal coordinate system.
      */
      Scalar Z() const { return fCoordinates.Z(); }

      /**
          Polar R, converting if necessary from internal coordinate system.
      */
      Scalar R() const { return fCoordinates.R(); }

      /**
          Polar theta, converting if necessary from internal coordinate system.
      */
      Scalar Theta() const { return fCoordinates.Theta(); }

      /**
          Polar phi, converting if necessary from internal coordinate system.
      */
      Scalar Phi() const { return fCoordinates.Phi(); }

      /**
          Polar eta, converting if necessary from internal coordinate system.
      */
      Scalar Eta() const { return fCoordinates.Eta(); }

      /**
          Cylindrical transverse component rho
      */
      Scalar Rho() const { return fCoordinates.Rho(); }

      // ----- Other fundamental properties -----

      /**
          Magnitute squared ( r^2 in spherical coordinate)
      */
      Scalar Mag2() const { return fCoordinates.Mag2();}

      /**
         Transverse component squared (rho^2 in cylindrical coordinates.
      */
      Scalar Perp2() const { return fCoordinates.Perp2();}

      // It is physically meaningless to speak of the unit vector corresponding
      // to a point.

      // ------ Setting individual elements present in coordinate system ------

      /**
         Change X - Cartesian3D coordinates only
      */
       PositionVector3D<CoordSystem, Tag>& SetX (Scalar xx) { fCoordinates.SetX(xx); return *this;}

      /**
         Change Y - Cartesian3D coordinates only
      */
       PositionVector3D<CoordSystem, Tag>& SetY (Scalar yy) { fCoordinates.SetY(yy); return *this;}

      /**
         Change Z - Cartesian3D coordinates only
      */
       PositionVector3D<CoordSystem, Tag>& SetZ (Scalar zz) { fCoordinates.SetZ(zz); return *this;}

      /**
         Change R - Polar3D coordinates only
      */
       PositionVector3D<CoordSystem, Tag>& SetR (Scalar rr) { fCoordinates.SetR(rr); return *this;}

      /**
         Change Theta - Polar3D coordinates only
      */
       PositionVector3D<CoordSystem, Tag>& SetTheta (Scalar ang) { fCoordinates.SetTheta(ang); return *this;}

      /**
         Change Phi - Polar3D or CylindricalEta3D coordinates
      */
       PositionVector3D<CoordSystem, Tag>& SetPhi (Scalar ang) { fCoordinates.SetPhi(ang); return *this;}

      /**
         Change Rho - CylindricalEta3D coordinates only
      */
       PositionVector3D<CoordSystem, Tag>& SetRho (Scalar rr) { fCoordinates.SetRho(rr); return *this;}

      /**
         Change Eta - CylindricalEta3D coordinates only
      */
       PositionVector3D<CoordSystem, Tag>& SetEta (Scalar etaval) { fCoordinates.SetEta(etaval); return *this;}

      // ------ Operations combining two vectors ------
      // need to specialize to exclude those with a different tags 

     /**
      Return the scalar (Dot) product of this with a displacement vector in
      any coordinate system, but with the same tag
      */
      template< class OtherCoords >
      Scalar Dot( const  DisplacementVector3D<OtherCoords,Tag> & v) const {
        return X()*v.x() + Y()*v.y() + Z()*v.z();
      }


      /**
         Return vector (Cross) product of this point with a displacement, as a
         point vector in this coordinate system of the first.
      */
      template< class OtherCoords >
      PositionVector3D Cross( const DisplacementVector3D<OtherCoords,Tag> & v) const  {
        PositionVector3D  result;
        result.SetXYZ (  Y()*v.z() - v.y()*Z(),
                         Z()*v.x() - v.z()*X(),
                         X()*v.y() - v.x()*Y() );
        return result;
      }

      // The Dot and Cross products of a pair of point vectors are physically
      // meaningless concepts and thus are defined as private methods

      // It is physically meaningless to speak of the Unit vector corresponding
      // to a point.


      /**
          Self Addition with a displacement vector.
      */
      template <class OtherCoords>
      PositionVector3D & operator+= (const  DisplacementVector3D<OtherCoords,Tag> & v)
      {
        SetXYZ( X() + v.X(), Y() + v.Y(), Z() + v.Z() );
        return *this;
      }

      /**
          Self Difference with a displacement vector.
      */
      template <class OtherCoords>
      PositionVector3D & operator-= (const  DisplacementVector3D<OtherCoords,Tag> & v)
      {
        SetXYZ(  X() - v.X(), Y() - v.Y(), Z() - v.Z() );
        return *this;
      }

      /**
         multiply this vector by a scalar quantity
      */
      PositionVector3D & operator *= (Scalar a) {
        fCoordinates.Scale(a);
        return *this;
      }

      /**
         divide this vector by a scalar quantity
      */
      PositionVector3D & operator /= (Scalar a) {
        fCoordinates.Scale(1/a);
        return *this;
      }

      // The following methods (v*a and v/a) could instead be free functions.
      // They were moved into the class to solve a problem on AIX.
      /**
        Multiply a vector by a real number
      */
      PositionVector3D operator * ( Scalar a ) const {
        PositionVector3D tmp(*this);
        tmp *= a;
        return tmp;
      }

      /**
         Division of a vector with a real number
       */
      PositionVector3D operator / (Scalar a) const {
        PositionVector3D tmp(*this);
        tmp /= a;
        return tmp;
      }

      // Limited backward name compatibility with CLHEP

      Scalar x()     const { return fCoordinates.X();     }
      Scalar y()     const { return fCoordinates.Y();     }
      Scalar z()     const { return fCoordinates.Z();     }
      Scalar r()     const { return fCoordinates.R();     }
      Scalar theta() const { return fCoordinates.Theta(); }
      Scalar phi()   const { return fCoordinates.Phi();   }
      Scalar eta()   const { return fCoordinates.Eta();   }
      Scalar rho()   const { return fCoordinates.Rho();   }
      Scalar mag2()  const { return fCoordinates.Mag2();  }
      Scalar perp2() const { return fCoordinates.Perp2(); }

    private:

      CoordSystem fCoordinates;

      // Prohibited methods

      // this should not compile (if from a vector or points with different tag

      template <class OtherCoords, class OtherTag>
      explicit PositionVector3D( const PositionVector3D<OtherCoords, OtherTag> & );

      template <class OtherCoords, class OtherTag>
      explicit PositionVector3D( const DisplacementVector3D<OtherCoords, OtherTag> & );

      template <class OtherCoords, class OtherTag>
      PositionVector3D & operator=( const PositionVector3D<OtherCoords, OtherTag> & );

      template <class OtherCoords, class OtherTag>
      PositionVector3D & operator=( const DisplacementVector3D<OtherCoords, OtherTag> & );
      
      template <class OtherCoords, class OtherTag>
      PositionVector3D & operator+=(const  DisplacementVector3D<OtherCoords, OtherTag> & );

      template <class OtherCoords, class OtherTag>
      PositionVector3D & operator-=(const  DisplacementVector3D<OtherCoords, OtherTag> & );

//       /**
//          Dot product of two position vectors is inappropriate
//       */
//       template <class T2, class U>
//       PositionVector3D Dot( const PositionVector3D<T2,U> & v) const;

//       /**
//          Cross product of two position vectors is inappropriate
//       */
//       template <class T2, class U>
//       PositionVector3D Cross( const PositionVector3D<T2,U> & v) const;



    };

// ---------- PositionVector3D class template ends here ----------------
// ---------------------------------------------------------------------

    /**
       Multiplication of a position vector by real number  a*v
    */
    template <class CoordSystem, class U>
    inline
    PositionVector3D<CoordSystem>
    operator * ( typename PositionVector3D<CoordSystem,U>::Scalar a,
                 PositionVector3D<CoordSystem,U> v) {
      return v *= a;
      // Note - passing v by value and using operator *= may save one
      // copy relative to passing v by const ref and creating a temporary.
    }

    /**
        Difference between two PositionVector3D vectors.
        The result is a DisplacementVector3D.
        The (coordinate system) type of the returned vector is defined to
        be identical to that of the first position vector.
    */

    template <class CoordSystem1, class CoordSystem2, class U>
    inline
    DisplacementVector3D<CoordSystem1,U>
    operator-( const PositionVector3D<CoordSystem1,U> & v1,
               const PositionVector3D<CoordSystem2,U> & v2) {
      return DisplacementVector3D<CoordSystem1,U>( Cartesian3D<typename CoordSystem1::Scalar>(
                                                                               v1.X()-v2.X(), v1.Y()-v2.Y(),v1.Z()-v2.Z() )
                                             );
    }

    /**
        Addition of a PositionVector3D and a DisplacementVector3D.
        The return type is a PositionVector3D,
        of the same (coordinate system) type as the input PositionVector3D.
    */
    template <class CoordSystem1, class CoordSystem2, class U>
    inline
    PositionVector3D<CoordSystem2,U>
    operator+( PositionVector3D<CoordSystem2,U> p1,
               const DisplacementVector3D<CoordSystem1,U>  & v2)        {
      return p1 += v2;
    }

    /**
        Addition of a DisplacementVector3D and a PositionVector3D.
        The return type is a PositionVector3D,
        of the same (coordinate system) type as the input PositionVector3D.
    */
    template <class CoordSystem1, class CoordSystem2, class U>
    inline
    PositionVector3D<CoordSystem2,U>
    operator+( DisplacementVector3D<CoordSystem1,U> const & v1,
               PositionVector3D<CoordSystem2,U> p2)        {
      return p2 += v1;
    }

    /**
        Subtraction of a DisplacementVector3D from a PositionVector3D.
        The return type is a PositionVector3D,
        of the same (coordinate system) type as the input PositionVector3D.
    */
    template <class CoordSystem1, class CoordSystem2, class U>
    inline
    PositionVector3D<CoordSystem2,U>
    operator-( PositionVector3D<CoordSystem2,U> p1,
               DisplacementVector3D<CoordSystem1,U> const & v2)        {
      return p1 -= v2;
    }

    // Scaling of a position vector with a real number is not physically meaningful

    // ------------- I/O to/from streams -------------

    template< class char_t, class traits_t, class T, class U >
      inline
      std::basic_ostream<char_t,traits_t> &
      operator << ( std::basic_ostream<char_t,traits_t> & os
                  , PositionVector3D<T,U> const & v
                  )
    {
      if( !os )  return os;

      typename T::Scalar a, b, c;
      v.GetCoordinates(a, b, c);

      if( detail::get_manip( os, detail::bitforbit ) )  {
        detail::set_manip( os, detail::bitforbit, '\00' );
        typedef GenVector_detail::BitReproducible BR;
        BR::Output(os, a);
        BR::Output(os, b);
        BR::Output(os, c);
      }
      else  {
        os << detail::get_manip( os, detail::open  ) << a
           << detail::get_manip( os, detail::sep   ) << b
           << detail::get_manip( os, detail::sep   ) << c
           << detail::get_manip( os, detail::close );
      }

      return os;

    }  // op<< <>()


    template< class char_t, class traits_t, class T, class U >
      inline
      std::basic_istream<char_t,traits_t> &
      operator >> ( std::basic_istream<char_t,traits_t> & is
                  , PositionVector3D<T,U> & v
                  )
    {
      if( !is )  return is;

      typename T::Scalar a, b, c;

      if( detail::get_manip( is, detail::bitforbit ) )  {
        detail::set_manip( is, detail::bitforbit, '\00' );
        typedef GenVector_detail::BitReproducible BR;
        BR::Input(is, a);
        BR::Input(is, b);
        BR::Input(is, c);
      }
      else  {
        detail::require_delim( is, detail::open  );  is >> a;
        detail::require_delim( is, detail::sep   );  is >> b;
        detail::require_delim( is, detail::sep   );  is >> c;
        detail::require_delim( is, detail::close );
      }

      if( is )
        v.SetCoordinates(a, b, c);
      return is;

    }  // op>> <>()




  } // namespace Math

} // namespace ROOT


#endif /* ROOT_Math_GenVector_PositionVector3D  */