This file is indexed.

/usr/include/root/Math/GenVector/PtEtaPhiE4D.h is in libroot-math-genvector-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// @(#)root/mathcore:$Id$
// Authors: W. Brown, M. Fischler, L. Moneta    2005  

/**********************************************************************
*                                                                    *
* Copyright (c) 2005 , LCG ROOT FNAL MathLib Team                    *
*                                                                    *
*                                                                    *
**********************************************************************/

// Header file for class PtEtaPhiE4D
// 
// Created by: fischler at Wed Jul 20 2005
//   based on CylindricalEta4D by moneta
// 
// Last update: $Id$
// 
#ifndef ROOT_Math_GenVector_PtEtaPhiE4D 
#define ROOT_Math_GenVector_PtEtaPhiE4D  1

#ifndef ROOT_Math_Math
#include "Math/Math.h"
#endif

#ifndef ROOT_Math_GenVector_etaMax
#include "Math/GenVector/etaMax.h"
#endif

#ifndef ROOT_Math_GenVector_GenVector_exception 
#include "Math/GenVector/GenVector_exception.h"
#endif



//#define TRACE_CE
#ifdef TRACE_CE
#include <iostream>
#endif



namespace ROOT {   

namespace Math { 
       
//__________________________________________________________________________________________
/** 
    Class describing a 4D cylindrical coordinate system
    using Pt , Phi, Eta and E (or rho, phi, eta , T) 
    The metric used is (-,-,-,+). 
    Phi is restricted to be in the range [-PI,PI)
    
    @ingroup GenVector
*/ 

template <class ScalarType> 
class PtEtaPhiE4D { 

public : 

   typedef ScalarType Scalar;

   // --------- Constructors ---------------

   /**
      Default constructor gives zero 4-vector  
   */
   PtEtaPhiE4D() : fPt(0), fEta(0), fPhi(0), fE(0) { }

   /**
      Constructor  from pt, eta, phi, e values
   */
   PtEtaPhiE4D(Scalar pt, Scalar eta, Scalar phi, Scalar e) : 
      fPt(pt), fEta(eta), fPhi(phi), fE(e) { Restrict(); }

   /**
      Generic constructor from any 4D coordinate system implementing 
      Pt(), Eta(), Phi() and E()  
   */ 
   template <class CoordSystem > 
   explicit PtEtaPhiE4D(const CoordSystem & c) : 
      fPt(c.Pt()), fEta(c.Eta()), fPhi(c.Phi()), fE(c.E())  { }

   // for g++  3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower 
   // so we decided to re-implement them ( there is no no need to have them with g++4)

   /**
      copy constructor
    */
   PtEtaPhiE4D(const PtEtaPhiE4D & v) : 
      fPt(v.fPt), fEta(v.fEta), fPhi(v.fPhi), fE(v.fE) { }
      
   /**
      assignment operator 
    */
   PtEtaPhiE4D & operator = (const PtEtaPhiE4D & v) { 
      fPt  = v.fPt;  
      fEta = v.fEta;  
      fPhi = v.fPhi;  
      fE   = v.fE;
      return *this;
   }


   /**
      Set internal data based on an array of 4 Scalar numbers
   */ 
   void SetCoordinates( const Scalar src[] ) 
   { fPt=src[0]; fEta=src[1]; fPhi=src[2]; fE=src[3]; Restrict(); }

   /**
      get internal data into an array of 4 Scalar numbers
   */ 
   void GetCoordinates( Scalar dest[] ) const 
   { dest[0] = fPt; dest[1] = fEta; dest[2] = fPhi; dest[3] = fE; }

   /**
      Set internal data based on 4 Scalar numbers
   */ 
   void SetCoordinates(Scalar pt, Scalar eta, Scalar phi, Scalar e) 
   { fPt=pt; fEta = eta; fPhi = phi; fE = e; Restrict(); }

   /**
      get internal data into 4 Scalar numbers
   */ 
   void 
   GetCoordinates(Scalar& pt, Scalar & eta, Scalar & phi, Scalar& e) const 
   { pt=fPt; eta=fEta; phi = fPhi; e = fE; }

   // --------- Coordinates and Coordinate-like Scalar properties -------------

   // 4-D Cylindrical eta coordinate accessors  

   Scalar Pt()  const { return fPt;  }
   Scalar Eta() const { return fEta; }
   Scalar Phi() const { return fPhi; }
   Scalar E()   const { return fE;   }

   Scalar Perp()const { return Pt(); }
   Scalar Rho() const { return Pt(); }
   Scalar T()   const { return E();  }
  
   // other coordinate representation

   Scalar Px() const { return fPt*cos(fPhi);}
   Scalar X () const { return Px();         }
   Scalar Py() const { return fPt*sin(fPhi);}
   Scalar Y () const { return Py();         }
   Scalar Pz() const {
      return fPt >   0 ? fPt*std::sinh(fEta)     : 
         fEta == 0 ? 0                       :
         fEta >  0 ? fEta - etaMax<Scalar>() :
         fEta + etaMax<Scalar>() ; 
   }
   Scalar Z () const { return Pz(); }

   /** 
       magnitude of momentum
   */
   Scalar P() const { 
      return  fPt  > 0                 ?  fPt*std::cosh(fEta)       :
         fEta >  etaMax<Scalar>() ?  fEta - etaMax<Scalar>()   :
         fEta < -etaMax<Scalar>() ? -fEta - etaMax<Scalar>()   :
         0                         ; 
   }
   Scalar R() const { return P(); }

   /** 
       squared magnitude of spatial components (momentum squared)
   */
   Scalar P2() const { Scalar p = P(); return p*p; }

   /**
      vector magnitude squared (or mass squared)
   */
   Scalar M2() const { Scalar p = P(); return fE*fE - p*p; }
   Scalar Mag2() const { return M2(); } 

   /**
      invariant mass 
   */
   Scalar M() const    { 
      Scalar mm = M2();
      if (mm >= 0) {
         return std::sqrt(mm);
      } else {
         GenVector::Throw ("PtEtaPhiE4D::M() - Tachyonic:\n"
                           "    Pt and Eta give P such that P^2 > E^2, so the mass would be imaginary");
         return -std::sqrt(-mm);
      }
   }
   Scalar Mag() const    { return M(); }

   /** 
       transverse spatial component squared  
   */
   Scalar Pt2()   const { return fPt*fPt;}
   Scalar Perp2() const { return Pt2();  }

   /** 
       transverse mass squared
   */
   Scalar Mt2() const {  Scalar pz = Pz(); return fE*fE  - pz*pz; } 

   /**
      transverse mass
   */
   Scalar Mt() const { 
      Scalar mm = Mt2();
      if (mm >= 0) {
         return std::sqrt(mm);
      } else {
         GenVector::Throw ("PtEtaPhiE4D::Mt() - Tachyonic:\n"
                           "    Pt and Eta give Pz such that Pz^2 > E^2, so the mass would be imaginary");
         return -std::sqrt(-mm);
      }
   } 

   /**
      transverse energy
   */
   /**
      transverse energy
   */
   Scalar Et() const { 
      return fE / std::cosh(fEta); // faster using eta
   }

   /** 
       transverse energy squared
   */
   Scalar Et2() const { Scalar et = Et(); return et*et; }


private:
   inline static Scalar pi() { return M_PI; } 
   inline void Restrict() {
      if ( fPhi <= -pi() || fPhi > pi() ) 
         fPhi = fPhi - std::floor( fPhi/(2*pi()) +.5 ) * 2*pi();
      return;
   } 
public:

   /**
      polar angle
   */
   Scalar Theta() const {
      if (fPt  >  0) return 2* std::atan( exp( - fEta ) );
      if (fEta >= 0) return 0;
      return pi();
   }

   // --------- Set Coordinates of this system  ---------------

   /**
      set Pt value 
   */
   void SetPt( Scalar  pt) { 
      fPt = pt; 
   }
   /**
      set eta value 
   */
   void SetEta( Scalar  eta) { 
      fEta = eta; 
   }
   /**
      set phi value 
   */
   void SetPhi( Scalar  phi) { 
      fPhi = phi; 
      Restrict();
   }
   /**
      set E value 
   */
   void SetE( Scalar  e) { 
      fE = e; 
   }

   /** 
       set values using cartesian coordinate system  
   */
   void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e);


   // ------ Manipulations -------------

   /**
      negate the 4-vector
   */
   void Negate( ) { 
      fPhi = ( fPhi > 0 ? fPhi - pi() : fPhi + pi()  );
      fEta = - fEta; 
      fE = - fE; 
   }

   /**
      Scale coordinate values by a scalar quantity a
   */
   void Scale( Scalar a) { 
      if (a < 0) {
         Negate(); a = -a;
      }
      fPt *= a; 
      fE  *= a; 
   }

   /**
      Assignment from a generic coordinate system implementing 
      Pt(), Eta(), Phi() and E()  
   */ 
   template <class CoordSystem > 
   PtEtaPhiE4D & operator = (const CoordSystem & c) { 
      fPt  = c.Pt(); 
      fEta = c.Eta();
      fPhi = c.Phi(); 
      fE   = c.E(); 
      return *this;
   }

   /**
      Exact equality
   */  
   bool operator == (const PtEtaPhiE4D & rhs) const {
      return fPt == rhs.fPt && fEta == rhs.fEta 
         && fPhi == rhs.fPhi && fE == rhs.fE;
   }
   bool operator != (const PtEtaPhiE4D & rhs) const {return !(operator==(rhs));}

   // ============= Compatibility secition ==================

   // The following make this coordinate system look enough like a CLHEP
   // vector that an assignment member template can work with either
   Scalar x() const { return X(); }
   Scalar y() const { return Y(); }
   Scalar z() const { return Z(); } 
   Scalar t() const { return E(); } 



#if defined(__MAKECINT__) || defined(G__DICTIONARY) 

   // ====== Set member functions for coordinates in other systems =======

   void SetPx(Scalar px);  

   void SetPy(Scalar py);

   void SetPz(Scalar pz);

   void SetM(Scalar m);


#endif

private:

   ScalarType fPt;
   ScalarType fEta;
   ScalarType fPhi;
   ScalarType fE; 

};    
    
    
} // end namespace Math  
} // end namespace ROOT



// move implementations here to avoid circle dependencies
#ifndef ROOT_Math_GenVector_PxPyPzE4D 
#include "Math/GenVector/PxPyPzE4D.h"
#endif
#if defined(__MAKECINT__) || defined(G__DICTIONARY) 
#ifndef ROOT_Math_GenVector_PtEtaPhiM4D 
#include "Math/GenVector/PtEtaPhiM4D.h"
#endif
#endif

namespace ROOT { 

namespace Math { 

template <class ScalarType>  
inline void PtEtaPhiE4D<ScalarType>::SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e) {  
   *this = PxPyPzE4D<Scalar> (px, py, pz, e);
}


#if defined(__MAKECINT__) || defined(G__DICTIONARY) 
     
  // ====== Set member functions for coordinates in other systems =======

template <class ScalarType>  
inline void PtEtaPhiE4D<ScalarType>::SetPx(Scalar px) {  
   GenVector_exception e("PtEtaPhiE4D::SetPx() is not supposed to be called");
   throw e;
   PxPyPzE4D<Scalar> v(*this); v.SetPx(px); *this = PtEtaPhiE4D<Scalar>(v);
}
template <class ScalarType>  
inline void PtEtaPhiE4D<ScalarType>::SetPy(Scalar py) {  
   GenVector_exception e("PtEtaPhiE4D::SetPx() is not supposed to be called");
   throw e;
   PxPyPzE4D<Scalar> v(*this); v.SetPy(py); *this = PtEtaPhiE4D<Scalar>(v);
}
template <class ScalarType>  
inline void PtEtaPhiE4D<ScalarType>::SetPz(Scalar pz) {  
   GenVector_exception e("PtEtaPhiE4D::SetPx() is not supposed to be called");
   throw e;
   PxPyPzE4D<Scalar> v(*this); v.SetPz(pz); *this = PtEtaPhiE4D<Scalar>(v);
}
template <class ScalarType>  
inline void PtEtaPhiE4D<ScalarType>::SetM(Scalar m) {  
   GenVector_exception e("PtEtaPhiE4D::SetM() is not supposed to be called");
   throw e;
   PtEtaPhiM4D<Scalar> v(*this); v.SetM(m); 
   *this = PtEtaPhiE4D<Scalar>(v);
}

#endif  // endif __MAKE__CINT || G__DICTIONARY

} // end namespace Math

} // end namespace ROOT




#endif // ROOT_Math_GenVector_PtEtaPhiE4D