This file is indexed.

/usr/include/root/Math/GenVector/PxPyPzM4D.h is in libroot-math-genvector-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
// @(#)root/mathcore:$Id: 464c29f33a8bbd8462a3e15b7e4c30c6f5b74a30 $
// Authors: W. Brown, M. Fischler, L. Moneta    2005  

/**********************************************************************
*                                                                    *
* Copyright (c) 2005 , LCG ROOT MathLib Team                         *
*                                                                    *
*                                                                    *
**********************************************************************/

// Header file for class PxPyPzM4D
// 
// Created by: fischler at Wed Jul 20   2005
//   (starting from PxPyPzM4D by moneta)
// 
// Last update: $Id: 464c29f33a8bbd8462a3e15b7e4c30c6f5b74a30 $
// 
#ifndef ROOT_Math_GenVector_PxPyPzM4D 
#define ROOT_Math_GenVector_PxPyPzM4D  1

#ifndef ROOT_Math_GenVector_eta
#include "Math/GenVector/eta.h"
#endif

#ifndef ROOT_Math_GenVector_GenVector_exception 
#include "Math/GenVector/GenVector_exception.h"
#endif


#include <cmath>

namespace ROOT { 
  
namespace Math { 
    
//__________________________________________________________________________________________
/** 
    Class describing a 4D coordinate system 
    or momentum-energy vectors stored as (Px, Py, Pz, M).
    This system is useful to describe ultra-relativistic particles 
    (like electrons at LHC) to avoid numerical errors evaluating the mass 
    when E >>> m
    The metric used is (-,-,-,+)
    Spacelike particles (M2 < 0) are described with negative mass values, 
    but in this case m2 must alwasy be less than P2 to preserve a positive value of E2
    
    @ingroup GenVector
*/ 

template <class ScalarType = double> 
class PxPyPzM4D { 

public : 

   typedef ScalarType Scalar;

   // --------- Constructors ---------------

   /**
      Default constructor  with x=y=z=m=0 
   */
   PxPyPzM4D() : fX(0.0), fY(0.0), fZ(0.0), fM(0.0) { }


   /**
      Constructor  from x, y , z , m values
   */
   PxPyPzM4D(Scalar px, Scalar py, Scalar pz, Scalar m) : 
      fX(px), fY(py), fZ(pz), fM(m) { 
     
      if (fM < 0) RestrictNegMass();
   }

   /**
      construct from any 4D  coordinate system class 
      implementing X(), Y(), X() and M()
   */
   template <class CoordSystem> 
   explicit PxPyPzM4D(const CoordSystem & v) : 
      fX( v.X() ), fY( v.Y() ), fZ( v.Z() ), fM( v.M() )  
   { }

   // for g++  3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower 
   // so we decided to re-implement them ( there is no no need to have them with g++4)
   /**
      copy constructor
    */
   PxPyPzM4D(const PxPyPzM4D & v) : 
      fX(v.fX), fY(v.fY), fZ(v.fZ), fM(v.fM) { }
      
   /**
      assignment operator 
    */
   PxPyPzM4D & operator = (const PxPyPzM4D & v) { 
      fX = v.fX;  
      fY = v.fY;  
      fZ = v.fZ;  
      fM = v.fM;
      return *this;
   }


   /**
      construct from any 4D  coordinate system class 
      implementing X(), Y(), X() and M()
   */
   template <class AnyCoordSystem> 
   PxPyPzM4D & operator = (const AnyCoordSystem & v) { 
      fX = v.X();  
      fY = v.Y();  
      fZ = v.Z();  
      fM = v.M();
      return *this;
   }

   /**
      Set internal data based on an array of 4 Scalar numbers
   */ 
   void SetCoordinates( const Scalar src[] ) { 
      fX=src[0]; fY=src[1]; fZ=src[2]; fM=src[3]; 
      if (fM < 0) RestrictNegMass();
   }

   /**
      get internal data into an array of 4 Scalar numbers
   */ 
   void GetCoordinates( Scalar dest[] ) const 
   { dest[0] = fX; dest[1] = fY; dest[2] = fZ; dest[3] = fM; }

   /**
      Set internal data based on 4 Scalar numbers
   */ 
   void SetCoordinates(Scalar  px, Scalar  py, Scalar  pz, Scalar m) { 
      fX=px; fY=py; fZ=pz; fM=m;
      if (fM < 0) RestrictNegMass();
   }

   /**
      get internal data into 4 Scalar numbers
   */ 
   void GetCoordinates(Scalar& px, Scalar& py, Scalar& pz, Scalar& m) const 
   { px=fX; py=fY; pz=fZ; m=fM;}

   // --------- Coordinates and Coordinate-like Scalar properties -------------

   // cartesian (Minkowski)coordinate accessors 

   Scalar Px() const { return fX;}
   Scalar Py() const { return fY;}
   Scalar Pz() const { return fZ;}
   Scalar M() const  { return fM; }

   Scalar X() const { return fX;}
   Scalar Y() const { return fY;}
   Scalar Z() const { return fZ;}

   // other coordinate representation
   /**
      Energy 
    */
   Scalar E()  const { return std::sqrt(E2() ); }

   Scalar T() const { return E();}

   /**
      squared magnitude of spatial components
   */
   Scalar P2() const { return fX*fX + fY*fY + fZ*fZ; } 

   /**
      magnitude of spatial components (magnitude of 3-momentum)
   */
   Scalar P() const { return std::sqrt(P2()); } 
   Scalar R() const { return P(); } 

   /**
      vector magnitude squared (or mass squared)
      In case of negative mass (spacelike particles return negative values)
   */
   Scalar M2() const   { 
      return ( fM  >= 0 ) ?  fM*fM :  -fM*fM; 
   }
   Scalar Mag2() const { return M2(); } 

   Scalar Mag() const    { return M(); }

   /**
      energy squared
   */
   Scalar E2() const { 
      Scalar e2 =  P2() + M2(); 
      // protect against numerical errors when M2() is negative
      return e2 > 0 ? e2 : 0; 
   }

   /** 
       transverse spatial component squared  
   */
   Scalar Pt2()   const { return fX*fX + fY*fY;}
   Scalar Perp2() const { return Pt2();}

   /**
      Transverse spatial component (P_perp or rho)
   */
   Scalar Pt()   const { return std::sqrt(Perp2());}
   Scalar Perp() const { return Pt();}
   Scalar Rho()  const { return Pt();}

   /** 
       transverse mass squared
   */
   Scalar Mt2() const { return E2() - fZ*fZ; } 

   /**
      transverse mass
   */
   Scalar Mt() const { 
      Scalar mm = Mt2();
      if (mm >= 0) {
         return std::sqrt(mm);
      } else {
         GenVector::Throw ("PxPyPzM4D::Mt() - Tachyonic:\n"
                           "    Pz^2 > E^2 so the transverse mass would be imaginary");
         return -std::sqrt(-mm);
      }
   } 

   /** 
       transverse energy squared
   */
   Scalar Et2() const {  // is (E^2 * pt ^2) / p^2 
      // but it is faster to form p^2 from pt^2
      Scalar pt2 = Pt2();
      return pt2 == 0 ? 0 : E2() * pt2/( pt2 + fZ*fZ );
   }

   /**
      transverse energy
   */
   Scalar Et() const { 
      Scalar etet = Et2();
      return std::sqrt(etet);
   }

   /**
      azimuthal angle 
   */
   Scalar Phi() const  { 
      return (fX == 0.0 && fY == 0.0) ? 0.0 : std::atan2(fY,fX);
   }

   /**
      polar angle
   */
   Scalar Theta() const {
      return (fX == 0.0 && fY == 0.0 && fZ == 0.0) ? 0 : std::atan2(Pt(),fZ);
   }

   /** 
       pseudorapidity
   */
   Scalar Eta() const {
      return Impl::Eta_FromRhoZ ( Pt(), fZ); 
   }

   // --------- Set Coordinates of this system  ---------------


   /**
      set X value 
   */
   void SetPx( Scalar  px) { 
      fX = px; 
   }
   /**
      set Y value 
   */
   void SetPy( Scalar  py) { 
      fY = py; 
   }
   /**
      set Z value 
   */
   void SetPz( Scalar  pz) { 
      fZ = pz; 
   }
   /**
      set T value 
   */
   void SetM( Scalar  m) { 
      fM = m; 
      if (fM < 0) RestrictNegMass();
   }

   /** 
       set all values  
   */
   void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e);

   // ------ Manipulations -------------
  
   /**
      negate the 4-vector -  Note that the energy cannot be negate (would need an additional data member)
      therefore negate will work only on the spatial components. 
      One would need to use negate only with vectors having the energy as data members
   */
   void Negate( ) { 
      fX = -fX; 
      fY = -fY;  
      fZ = -fZ; 
      GenVector::Throw ("PxPyPzM4D::Negate - cannot negate the energy - can negate only the spatial components");
   }

   /**
      scale coordinate values by a scalar quantity a
   */
   void Scale( const Scalar & a) { 
      fX *= a; 
      fY *= a; 
      fZ *= a; 
      fM *= a; 
   }
 

   /**
      Exact equality
   */  
   bool operator == (const PxPyPzM4D & rhs) const {
      return fX == rhs.fX && fY == rhs.fY && fZ == rhs.fZ && fM == rhs.fM;
   }
   bool operator != (const PxPyPzM4D & rhs) const {return !(operator==(rhs));}


   // ============= Compatibility section ==================

   // The following make this coordinate system look enough like a CLHEP
   // vector that an assignment member template can work with either
   Scalar x() const { return X(); }
   Scalar y() const { return Y(); }
   Scalar z() const { return Z(); } 
   Scalar t() const { return E(); } 



#if defined(__MAKECINT__) || defined(G__DICTIONARY) 

   // ====== Set member functions for coordinates in other systems =======

   void SetPt(Scalar pt);   

   void SetEta(Scalar eta);  

   void SetPhi(Scalar phi);  

   void SetE(Scalar t); 

#endif

private:

   // restrict the value of negative mass to avoid unphysical negative E2 values 
   // M2 must be less than P2 for the tachionic particles - otherwise use positive values
   inline void RestrictNegMass() {
      if ( fM >=0 ) return;
      if ( P2() - fM*fM  < 0 ) { 
         GenVector::Throw("PxPyPzM4D::unphysical value of mass, set to closest physical value");
         fM = - P();
      }
      return;
   } 


   /**
      (contigous) data containing the coordinate values x,y,z,t
   */

   ScalarType fX;
   ScalarType fY;
   ScalarType fZ;
   ScalarType fM;

}; 
    
} // end namespace Math  
} // end namespace ROOT


// move implementations here to avoid circle dependencies

#ifndef ROOT_Math_GenVector_PxPyPzE4D 
#include "Math/GenVector/PxPyPzE4D.h"
#endif
#ifndef ROOT_Math_GenVector_PtEtaPhiM4D 
#include "Math/GenVector/PtEtaPhiM4D.h"
#endif

namespace ROOT { 

namespace Math { 

template <class ScalarType>  
inline void PxPyPzM4D<ScalarType>::SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e) {  
   *this = PxPyPzE4D<Scalar> (px, py, pz, e);
}


#if defined(__MAKECINT__) || defined(G__DICTIONARY) 
     
  // ====== Set member functions for coordinates in other systems =======

  // ====== Set member functions for coordinates in other systems =======
 
template <class ScalarType>  
inline void PxPyPzM4D<ScalarType>::SetPt(ScalarType pt) {  
   GenVector_exception e("PxPyPzM4D::SetPt() is not supposed to be called");
   throw e;
   PtEtaPhiE4D<ScalarType> v(*this); v.SetPt(pt); *this = PxPyPzM4D<ScalarType>(v);
}
template <class ScalarType>  
inline void PxPyPzM4D<ScalarType>::SetEta(ScalarType eta) {  
   GenVector_exception e("PxPyPzM4D::SetEta() is not supposed to be called");
   throw e;
   PtEtaPhiE4D<ScalarType> v(*this); v.SetEta(eta); *this = PxPyPzM4D<ScalarType>(v);
}
template <class ScalarType>  
inline void PxPyPzM4D<ScalarType>::SetPhi(ScalarType phi) {  
   GenVector_exception e("PxPyPzM4D::SetPhi() is not supposed to be called");
   throw e;
   PtEtaPhiE4D<ScalarType> v(*this); v.SetPhi(phi); *this = PxPyPzM4D<ScalarType>(v);
}
template <class ScalarType>  
inline void PxPyPzM4D<ScalarType>::SetE(ScalarType energy) {  
   GenVector_exception e("PxPyPzM4D::SetE() is not supposed to be called");
   throw e;
   PxPyPzE4D<ScalarType> v(*this); v.SetE(energy); 
   *this = PxPyPzM4D<ScalarType>(v);
}


#endif  // endif __MAKE__CINT || G__DICTIONARY

} // end namespace Math

} // end namespace ROOT



#endif // ROOT_Math_GenVector_PxPyPzM4D