/usr/include/root/RooStats/ConfidenceBelt.h is in libroot-roofit-dev 5.34.30-0ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | // @(#)root/roostats:$Id$
// Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke
/*************************************************************************
* Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#ifndef RooStats_ConfidenceBelt
#define RooStats_ConfidenceBelt
#ifndef ROO_ARG_SET
#include "RooArgSet.h"
#endif
#ifndef ROO_TREE_DATA
#include "RooAbsData.h"
#endif
#ifndef RooStats_ConfInterval
#include "RooStats/ConfInterval.h"
#endif
#include "RooStats/SamplingDistribution.h"
#include "TRef.h"
#include <vector>
#include <map>
namespace RooStats {
///////////////////////////
class SamplingSummaryLookup : public TObject {
typedef std::pair<Double_t, Double_t> AcceptanceCriteria; // defined by Confidence level, leftside tail probability
typedef std::map<Int_t, AcceptanceCriteria> LookupTable; // map ( Index, ( CL, leftside tail prob) )
public:
SamplingSummaryLookup() {}
virtual ~SamplingSummaryLookup() {}
void Add(Double_t cl, Double_t leftside){
// add cl,leftside pair to lookup table
AcceptanceCriteria tmp(cl, leftside);
// should check to see if this is already in the map
if(GetLookupIndex(cl,leftside) >=0 ){
std::cout<< "SamplingSummaryLookup::Add, already in lookup table" << std::endl;
} else
fLookupTable[fLookupTable.size()]= tmp;
}
Int_t GetLookupIndex(Double_t cl, Double_t leftside){
// get index for cl,leftside pair
AcceptanceCriteria tmp(cl, leftside);
Double_t tolerance = 1E-6; // some small number to protect floating point comparison. What is better way?
LookupTable::iterator it = fLookupTable.begin();
Int_t index = -1;
for(; it!= fLookupTable.end(); ++it) {
index++;
if( TMath::Abs( (*it).second.first - cl ) < tolerance &&
TMath::Abs( (*it).second.second - leftside ) < tolerance )
break; // exit loop, found
}
// check that it was found
if(index == (Int_t)fLookupTable.size())
index = -1;
return index;
}
Double_t GetConfidenceLevel(Int_t index){
if(index<0 || index>(Int_t)fLookupTable.size()) {
std::cout << "SamplingSummaryLookup::GetConfidenceLevel, index not in lookup table" << std::endl;
return -1;
}
return fLookupTable[index].first;
}
Double_t GetLeftSideTailFraction(Int_t index){
if(index<0 || index>(Int_t)fLookupTable.size()) {
std::cout << "SamplingSummaryLookup::GetLeftSideTailFraction, index not in lookup table" << std::endl;
return -1;
}
return fLookupTable[index].second;
}
private:
LookupTable fLookupTable; // map ( Index, ( CL, leftside tail prob) )
protected:
ClassDef(SamplingSummaryLookup,1) // A simple class used by ConfidenceBelt
};
///////////////////////////
class AcceptanceRegion : public TObject{
public:
AcceptanceRegion() : fLookupIndex(0), fLowerLimit(0), fUpperLimit(0) {}
virtual ~AcceptanceRegion() {}
AcceptanceRegion(Int_t lu, Double_t ll, Double_t ul){
fLookupIndex = lu;
fLowerLimit = ll;
fUpperLimit = ul;
}
Int_t GetLookupIndex(){return fLookupIndex;}
Double_t GetLowerLimit(){return fLowerLimit;}
Double_t GetUpperLimit(){return fUpperLimit;}
private:
Int_t fLookupIndex; // want a small footprint reference to the RooArgSet for particular parameter point
Double_t fLowerLimit; // lower limit on test statistic
Double_t fUpperLimit; // upper limit on test statistic
protected:
ClassDef(AcceptanceRegion,1) // A simple class for acceptance regions used for ConfidenceBelt
};
///////////////////////////
class SamplingSummary : public TObject {
public:
SamplingSummary() : fParameterPointIndex(0) {}
virtual ~SamplingSummary() {}
SamplingSummary(AcceptanceRegion& ar) : fParameterPointIndex(0) {
AddAcceptanceRegion(ar);
}
Int_t GetParameterPointIndex(){return fParameterPointIndex;}
SamplingDistribution* GetSamplingDistribution(){
return (SamplingDistribution*) fSamplingDistribution.GetObject(); // dereference TRef
}
AcceptanceRegion& GetAcceptanceRegion(Int_t index=0){return fAcceptanceRegions[index];}
void AddAcceptanceRegion(AcceptanceRegion& ar){
Int_t index = ar.GetLookupIndex();
if( fAcceptanceRegions.count(index) !=0) {
std::cout << "SamplingSummary::AddAcceptanceRegion, need to implement merging protocol" << std::endl;
} else {
fAcceptanceRegions[index]=ar;
}
}
private:
Int_t fParameterPointIndex; // want a small footprint reference to the RooArgSet for particular parameter point
TRef fSamplingDistribution; // persistent pointer to a SamplingDistribution
std::map<Int_t, AcceptanceRegion> fAcceptanceRegions;
protected:
ClassDef(SamplingSummary,1) // A summary of acceptance regions for confidence belt
};
/////////////////////////////////////////
class ConfidenceBelt : public TNamed {
private:
SamplingSummaryLookup fSamplingSummaryLookup;
std::vector<SamplingSummary> fSamplingSummaries; // composite of several AcceptanceRegions
RooAbsData* fParameterPoints; // either a histogram (RooDataHist) or a tree (RooDataSet)
public:
// constructors,destructors
ConfidenceBelt();
ConfidenceBelt(const char* name);
ConfidenceBelt(const char* name, const char* title);
ConfidenceBelt(const char* name, RooAbsData&);
ConfidenceBelt(const char* name, const char* title, RooAbsData&);
virtual ~ConfidenceBelt();
// add after creating a region
void AddAcceptanceRegion(RooArgSet&, AcceptanceRegion region, Double_t cl=-1., Double_t leftside=-1.);
// add without creating a region, more useful for clients
void AddAcceptanceRegion(RooArgSet& point, Int_t dataSetIndex, Double_t lower, Double_t upper, Double_t cl=-1., Double_t leftside=-1.);
AcceptanceRegion* GetAcceptanceRegion(RooArgSet&, Double_t cl=-1., Double_t leftside=-1.);
Double_t GetAcceptanceRegionMin(RooArgSet&, Double_t cl=-1., Double_t leftside=-1.);
Double_t GetAcceptanceRegionMax(RooArgSet&, Double_t cl=-1., Double_t leftside=-1.);
std::vector<Double_t> ConfidenceLevels() const ;
// Method to return lower limit on a given parameter
// Double_t LowerLimit(RooRealVar& param) ; // could provide, but misleading?
// Double_t UpperLimit(RooRealVar& param) ; // could provide, but misleading?
// do we want it to return list of parameters
virtual RooArgSet* GetParameters() const;
// check if parameters are correct. (dummy implementation to start)
Bool_t CheckParameters(RooArgSet&) const ;
protected:
ClassDef(ConfidenceBelt,1) // A confidence belt for the Neyman Construction
};
}
#endif
|