This file is indexed.

/usr/include/root/RooStats/SamplingDistribution.h is in libroot-roofit-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
// @(#)root/roostats:$Id$

/*************************************************************************
 * Project: RooStats                                                     *
 * Package: RooFit/RooStats                                              *
 * Authors:                                                              *
 *   Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke       *
 *************************************************************************
 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

#ifndef ROOSTATS_SamplingDistribution
#define ROOSTATS_SamplingDistribution

#ifndef ROOT_TNamed
#include "TNamed.h"
#endif

#include "Rtypes.h"
#include "RooDataSet.h"


#include <vector>


namespace RooStats {

 class SamplingDistribution : public TNamed {

   public:

    // Constructor for SamplingDistribution
    SamplingDistribution(const char *name,const char *title, std::vector<Double_t>& samplingDist, const char * varName = 0);
    SamplingDistribution(const char *name,const char *title,
			 std::vector<Double_t>& samplingDist, std::vector<Double_t>& sampleWeights, const char * varName = 0);


    SamplingDistribution(const char *name,const char *title, const char * varName = 0);

    SamplingDistribution(const char *name,const char *title, RooDataSet& dataSet, const char * columnName = 0, const char * varName = 0);

    // Default constructor for SamplingDistribution
    SamplingDistribution();
    
    // Destructor of SamplingDistribution
    virtual ~SamplingDistribution();
    
    // get the inverse of the Cumulative distribution function
    Double_t InverseCDF(Double_t pvalue);

    // get the inverse of the Cumulative distribution function
    Double_t InverseCDFInterpolate(Double_t pvalue);

    // get the inverse of the Cumulative distribution function
    // together with the inverse based on sampling variation
    Double_t InverseCDF(Double_t pvalue, Double_t sigmaVariaton, Double_t& inverseVariation);
  
    // merge two sampling distributions
    void Add(const SamplingDistribution* other);
    
    // size of samples
    Int_t GetSize() const{return fSamplingDist.size();}

    // Get test statistics values
    const std::vector<Double_t> & GetSamplingDistribution() const {return fSamplingDist;}
    // Get the sampling weights 
    const std::vector<Double_t> & GetSampleWeights() const {return fSampleWeights;}

    const TString GetVarName() const {return fVarName;}
    
    // numerical integral in these limits
    Double_t Integral(Double_t low, Double_t high, Bool_t normalize = kTRUE, Bool_t lowClosed = kTRUE, Bool_t highClosed = kFALSE) const;

    // numerical integral in these limits including error estimation
    Double_t IntegralAndError(Double_t & error, Double_t low, Double_t high, Bool_t normalize = kTRUE, 
                              Bool_t lowClosed = kTRUE, Bool_t highClosed = kFALSE) const;

    // calculate CDF as a special case of Integral(...) with lower limit equal to -inf
    Double_t CDF(Double_t x) const;

  private:

    mutable std::vector<Double_t> fSamplingDist; // vector of points for the sampling distribution
    mutable std::vector<Double_t> fSampleWeights; // vector of weights for the samples
    // store a RooRealVar that this distribution corresponds to?

    TString fVarName;

    mutable std::vector<Double_t> fSumW;   //! Chached vector with sum of the weight used to compute integral 
    mutable std::vector<Double_t> fSumW2;  //! Chached vector with sum of the weight used to compute integral error 
    
  protected:

    // internal function to sort values
    void SortValues() const;
    
    ClassDef(SamplingDistribution,2)  // Class containing the results of the HybridCalculator
  };
}

#endif