This file is indexed.

/usr/include/root/RooStats/ToyMCImportanceSampler.h is in libroot-roofit-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// @(#)root/roostats:$Id$
// Author: Sven Kreiss and Kyle Cranmer    January 2012
// Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke
/*************************************************************************
 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

#ifndef ROOSTATS_ToyMCImportanceSampler
#define ROOSTATS_ToyMCImportanceSampler

//_________________________________________________
/*
BEGIN_HTML
<p>
ToyMCImportanceSampler is an extension of the ToyMCSampler for Importance Sampling.
</p>

<p>
Implementation based on:
   Cranmer, Kreiss, Read (in Preparation)
</p>
END_HTML
*/
//

#include "RooStats/ToyMCSampler.h"

namespace RooStats {


enum toysStrategies { EQUALTOYSPERDENSITY, EXPONENTIALTOYDISTRIBUTION };


class ToyMCImportanceSampler: public ToyMCSampler {

   public:
      ToyMCImportanceSampler() :
         ToyMCSampler()
      {
         // Proof constructor. Do not use.

         fIndexGenDensity = 0;         
         fGenerateFromNull = true;
         fApplyVeto = true;
         fReuseNLL = true;
         fToysStrategy = EQUALTOYSPERDENSITY;
      }
      ToyMCImportanceSampler(TestStatistic &ts, Int_t ntoys) :
         ToyMCSampler(ts, ntoys)
      {
         fIndexGenDensity = 0;         
         fGenerateFromNull = true;
         fApplyVeto = true;
         fReuseNLL = true;
         fToysStrategy = EQUALTOYSPERDENSITY;
      }


      virtual ~ToyMCImportanceSampler();


      // overwrite GetSamplingDistributionsSingleWorker(paramPoint) with a version that loops
      // over nulls and importance densities, but calls the parent
      // ToyMCSampler::GetSamplingDistributionsSingleWorker(paramPoint).
      virtual RooDataSet* GetSamplingDistributionsSingleWorker(RooArgSet& paramPoint);






      using ToyMCSampler::GenerateToyData;
      virtual RooAbsData* GenerateToyData(RooArgSet& paramPoint, double& weight) const;
      virtual RooAbsData* GenerateToyData(RooArgSet& paramPoint, double& weight, std::vector<double>& impNLLs, double& nullNLL) const;
      virtual RooAbsData* GenerateToyData(std::vector<double>& weights) const;
      virtual RooAbsData* GenerateToyData(std::vector<double>& weights, std::vector<double>& nullNLLs, std::vector<double>& impNLLs) const;


      /// specifies the pdf to sample from
      void SetDensityToGenerateFromByIndex(unsigned int i, bool fromNull = false) {
         if( (fromNull  &&  i >= fNullDensities.size())  ||
             (!fromNull &&  i >= fImportanceDensities.size())
         ) {
            oocoutE((TObject*)0,InputArguments) << "Index out of range. Requested index: "<<i<<
               " , but null densities: "<<fNullDensities.size()<<
               " and importance densities: "<<fImportanceDensities.size() << std::endl;
         }
         
         fIndexGenDensity = i;
         fGenerateFromNull = fromNull;
         
         ClearCache();
      }
      
      // For importance sampling with multiple desnities/snapshots:
      // This is used to check the current Likelihood against Likelihoods from
      // other importance densities apart from the one given as importance snapshot.
      // The pdf can be NULL in which case the density from SetImportanceDensity()
      // is used. The snapshot is also optional.
      void AddImportanceDensity(RooAbsPdf* p, const RooArgSet* s) {
         if( p == NULL && s == NULL ) {
            oocoutI((TObject*)0,InputArguments) << "Neither density nor snapshot given. Doing nothing." << std::endl;
            return;
         }
         if( p == NULL && fPdf == NULL ) {
            oocoutE((TObject*)0,InputArguments) << "No density given, but snapshot is there. Aborting." << std::endl;
            return;
         }
         
         if( p == NULL ) p = fPdf;

         if( s ) s = (const RooArgSet*)s->snapshot();

         fImportanceDensities.push_back( p );
         fImportanceSnapshots.push_back( s );
         fImpNLLs.push_back( NULL );
      }      
      
      // The pdf can be NULL in which case the density from SetPdf()
      // is used. The snapshot and TestStatistic is also optional.
      void AddNullDensity(RooAbsPdf* p, const RooArgSet* s = NULL) {
         if( p == NULL && s == NULL ) {
            oocoutI((TObject*)0,InputArguments) << "Neither density nor snapshot nor test statistic given. Doing nothing." << std::endl;
            return;
         }
         
         if( p == NULL && fNullDensities.size() >= 1 ) p = fNullDensities[0];
         if( s == NULL ) s = fParametersForTestStat;
         if( s ) s = (const RooArgSet*)s->snapshot();
         
         fNullDensities.push_back( p );
         fNullSnapshots.push_back( s );
         fNullNLLs.push_back( NULL );
         ClearCache();
      }
      // overwrite from ToyMCSampler
      virtual void SetPdf(RooAbsPdf& pdf) {
         ToyMCSampler::SetPdf(pdf);
         
         if( fNullDensities.size() == 1 ) { fNullDensities[0] = &pdf; }
         else if( fNullDensities.size() == 0) AddNullDensity( &pdf );
         else{
            oocoutE((TObject*)0,InputArguments) << "Cannot use SetPdf() when already multiple null densities are specified. Please use AddNullDensity()." << std::endl;
         }
      }
      // overwrite from ToyMCSampler
      void SetParametersForTestStat(const RooArgSet& nullpoi) {
         ToyMCSampler::SetParametersForTestStat(nullpoi);
         if( fNullSnapshots.size() == 0 ) AddNullDensity( NULL, &nullpoi );
         else if( fNullSnapshots.size() == 1 ) {
            oocoutI((TObject*)0,InputArguments) << "Overwriting snapshot for the only defined null density." << std::endl;
            if( fNullSnapshots[0] ) delete fNullSnapshots[0];
            fNullSnapshots[0] = (const RooArgSet*)nullpoi.snapshot();
         }else{
            oocoutE((TObject*)0,InputArguments) << "Cannot use SetParametersForTestStat() when already multiple null densities are specified. Please use AddNullDensity()." << std::endl;
         }
      }

      
      // When set to true, this sets the weight of all toys to zero that
      // do not have the largest likelihood under the density it was generated
      // compared to the other densities.
      void SetApplyVeto(bool b = true) { fApplyVeto = b; }

      void SetReuseNLL(bool r = true) { fReuseNLL = r; }


     // set the conditional observables which will be used when creating the NLL
     // so the pdf's will not be normalized on the conditional observables when computing the NLL 
     // Since the class use a NLL we need to set the ocnditional onservables if they exist in the model
     virtual void SetConditionalObservables(const RooArgSet& set) {fConditionalObs.removeAll(); fConditionalObs.add(set);}


      int CreateNImpDensitiesForOnePOI(
         RooAbsPdf& pdf, 
         const RooArgSet& allPOI,
         RooRealVar& poi, 
         int n, 
         double poiValueForBackground = 0.0 
      );
      int CreateImpDensitiesForOnePOIAdaptively(
         RooAbsPdf& pdf, 
         const RooArgSet& allPOI,
         RooRealVar& poi,
         double nStdDevOverlap = 0.5, 
         double poiValueForBackground = 0.0 
      );

      void SetEqualNumToysPerDensity( void ) { fToysStrategy = EQUALTOYSPERDENSITY; }
      void SetExpIncreasingNumToysPerDensity( void ) { fToysStrategy = EXPONENTIALTOYDISTRIBUTION; }

   protected:

      // helper method for clearing  the cache
      virtual void ClearCache();

      unsigned int fIndexGenDensity;
      bool fGenerateFromNull;
      bool fApplyVeto;

   RooArgSet fConditionalObs;  // set of conditional observables

      // support multiple null densities
      std::vector<RooAbsPdf*> fNullDensities;
      mutable std::vector<const RooArgSet*> fNullSnapshots;

      // densities and snapshots to generate from      
      std::vector<RooAbsPdf*> fImportanceDensities;
      std::vector<const RooArgSet*> fImportanceSnapshots;
      
      bool fReuseNLL;
      
      toysStrategies fToysStrategy;

      mutable std::vector<RooAbsReal*> fNullNLLs;    //!
      mutable std::vector<RooAbsReal*> fImpNLLs;     //!


   protected:
   ClassDef(ToyMCImportanceSampler,2) // An implementation of importance sampling
};
}


#endif