/usr/include/root/TMVA/DataSet.h is in libroot-tmva-dev 5.34.30-0ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | // @(#)root/tmva $Id$
// Author: Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Helge Voss
/**********************************************************************************
* Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
* Package: TMVA *
* Class : DataSet *
* Web : http://tmva.sourceforge.net *
* *
* Description: *
* Contains all the data information *
* *
* Authors (alphabetical): *
* Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
* Joerg Stelzer <Joerg.Stelzer@cern.ch> - CERN, Switzerland *
* Peter Speckmayer <Peter.Speckmayer@cern.ch> - CERN, Switzerland *
* Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
* *
* Copyright (c) 2006: *
* CERN, Switzerland *
* U. of Victoria, Canada *
* MPI-K Heidelberg, Germany *
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted according to the terms listed in LICENSE *
* (http://tmva.sourceforge.net/LICENSE) *
**********************************************************************************/
#ifndef ROOT_TMVA_DataSet
#define ROOT_TMVA_DataSet
//////////////////////////////////////////////////////////////////////////
// //
// DataSet //
// //
// Class that contains all the data information //
// //
//////////////////////////////////////////////////////////////////////////
#include <vector>
#include <map>
#include <string>
#ifndef ROOT_TObject
#include "TObject.h"
#endif
#ifndef ROOT_TString
#include "TString.h"
#endif
#ifndef ROOT_TTree
#include "TTree.h"
#endif
//#ifndef ROOT_TCut
//#include "TCut.h"
//#endif
//#ifndef ROOT_TMatrixDfwd
//#include "TMatrixDfwd.h"
//#endif
//#ifndef ROOT_TPrincipal
//#include "TPrincipal.h"
//#endif
#ifndef ROOT_TRandom3
#include "TRandom3.h"
#endif
#ifndef ROOT_TMVA_Types
#include "TMVA/Types.h"
#endif
#ifndef ROOT_TMVA_VariableInfo
#include "TMVA/VariableInfo.h"
#endif
namespace TMVA {
class Event;
class DataSetInfo;
class MsgLogger;
class Results;
class DataSet {
public:
DataSet(const DataSetInfo&);
virtual ~DataSet();
void AddEvent( Event *, Types::ETreeType );
Long64_t GetNEvents( Types::ETreeType type = Types::kMaxTreeType ) const;
Long64_t GetNTrainingEvents() const { return GetNEvents(Types::kTraining); }
Long64_t GetNTestEvents() const { return GetNEvents(Types::kTesting); }
// const getters
const Event* GetEvent() const; // returns event without transformations
const Event* GetEvent ( Long64_t ievt ) const { fCurrentEventIdx = ievt; return GetEvent(); } // returns event without transformations
const Event* GetTrainingEvent( Long64_t ievt ) const { return GetEvent(ievt, Types::kTraining); }
const Event* GetTestEvent ( Long64_t ievt ) const { return GetEvent(ievt, Types::kTesting); }
const Event* GetEvent ( Long64_t ievt, Types::ETreeType type ) const
{
fCurrentTreeIdx = TreeIndex(type); fCurrentEventIdx = ievt; return GetEvent();
}
UInt_t GetNVariables() const;
UInt_t GetNTargets() const;
UInt_t GetNSpectators() const;
void SetCurrentEvent( Long64_t ievt ) const { fCurrentEventIdx = ievt; }
void SetCurrentType ( Types::ETreeType type ) const { fCurrentTreeIdx = TreeIndex(type); }
Types::ETreeType GetCurrentType() const;
void SetEventCollection( std::vector<Event*>*, Types::ETreeType );
const std::vector<Event*>& GetEventCollection( Types::ETreeType type = Types::kMaxTreeType ) const;
const TTree* GetEventCollectionAsTree();
Long64_t GetNEvtSigTest();
Long64_t GetNEvtBkgdTest();
Long64_t GetNEvtSigTrain();
Long64_t GetNEvtBkgdTrain();
Bool_t HasNegativeEventWeights() const { return fHasNegativeEventWeights; }
Results* GetResults ( const TString &,
Types::ETreeType type,
Types::EAnalysisType analysistype );
void DeleteResults ( const TString &,
Types::ETreeType type,
Types::EAnalysisType analysistype );
void SetVerbose( Bool_t ) {}
// sets the number of blocks to which the training set is divided,
// some of which are given to the Validation sample. As default they belong all to Training set.
void DivideTrainingSet( UInt_t blockNum );
// sets a certrain block from the origin training set to belong to either Training or Validation set
void MoveTrainingBlock( Int_t blockInd,Types::ETreeType dest, Bool_t applyChanges = kTRUE );
void IncrementNClassEvents( Int_t type, UInt_t classNumber );
Long64_t GetNClassEvents ( Int_t type, UInt_t classNumber );
void ClearNClassEvents ( Int_t type );
TTree* GetTree( Types::ETreeType type );
// accessors for random and importance sampling
void InitSampling( Float_t fraction, Float_t weight, UInt_t seed = 0 );
void EventResult( Bool_t successful, Long64_t evtNumber = -1 );
void CreateSampling() const;
UInt_t TreeIndex(Types::ETreeType type) const;
private:
// data members
DataSet();
void DestroyCollection( Types::ETreeType type, Bool_t deleteEvents );
const DataSetInfo& fdsi; //! datasetinfo that created this dataset
std::vector<Event*>::iterator fEvtCollIt;
std::vector< std::vector<Event*>* > fEventCollection; //! list of events for training/testing/...
std::vector< std::map< TString, Results* > > fResults; //! [train/test/...][method-identifier]
mutable UInt_t fCurrentTreeIdx;
mutable Long64_t fCurrentEventIdx;
// event sampling
std::vector<Char_t> fSampling; // random or importance sampling (not all events are taken) !! Bool_t are stored ( no std::vector<bool> taken for speed (performance) issues )
std::vector<Int_t> fSamplingNEvents; // number of events which should be sampled
std::vector<Float_t> fSamplingWeight; // weight change factor [weight is indicating if sampling is random (1.0) or importance (<1.0)]
mutable std::vector< std::vector< std::pair< Float_t, Long64_t >* > > fSamplingEventList; // weights and indices for sampling
mutable std::vector< std::vector< std::pair< Float_t, Long64_t >* > > fSamplingSelected; // selected events
TRandom3 *fSamplingRandom; // random generator for sampling
// further things
std::vector< std::vector<Long64_t> > fClassEvents; //! number of events of class 0,1,2,... in training[0]
// and testing[1] (+validation, trainingoriginal)
Bool_t fHasNegativeEventWeights; // true if at least one signal or bkg event has negative weight
mutable MsgLogger* fLogger; // message logger
MsgLogger& Log() const { return *fLogger; }
std::vector<Char_t> fBlockBelongToTraining; // when dividing the dataset to blocks, sets whether
// the certain block is in the Training set or else
// in the validation set
// boolean are stored, taken std::vector<Char_t> for performance reasons (instead of std::vector<Bool_t>)
Long64_t fTrainingBlockSize; // block size into which the training dataset is divided
void ApplyTrainingBlockDivision();
void ApplyTrainingSetDivision();
};
}
//_______________________________________________________________________
inline UInt_t TMVA::DataSet::TreeIndex(Types::ETreeType type) const
{
switch (type) {
case Types::kMaxTreeType : return fCurrentTreeIdx;
case Types::kTraining : return 0;
case Types::kTesting : return 1;
case Types::kValidation : return 2;
case Types::kTrainingOriginal : return 3;
default : return fCurrentTreeIdx;
}
}
//_______________________________________________________________________
inline TMVA::Types::ETreeType TMVA::DataSet::GetCurrentType() const
{
switch (fCurrentTreeIdx) {
case 0: return Types::kTraining;
case 1: return Types::kTesting;
case 2: return Types::kValidation;
case 3: return Types::kTrainingOriginal;
}
return Types::kMaxTreeType;
}
//_______________________________________________________________________
inline Long64_t TMVA::DataSet::GetNEvents(Types::ETreeType type) const
{
Int_t treeIdx = TreeIndex(type);
if (fSampling.size() > UInt_t(treeIdx) && fSampling.at(treeIdx)) {
return fSamplingSelected.at(treeIdx).size();
}
return GetEventCollection(type).size();
}
//_______________________________________________________________________
inline const std::vector<TMVA::Event*>& TMVA::DataSet::GetEventCollection( TMVA::Types::ETreeType type ) const
{
return *(fEventCollection.at(TreeIndex(type)));
}
#endif
|