This file is indexed.

/usr/include/root/TMVA/MethodPDEFoam.h is in libroot-tmva-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// @(#)root/tmva $Id$
// Author: Tancredi Carli, Dominik Dannheim, Alexander Voigt

/**********************************************************************************
 * Project: TMVA - a Root-integrated toolkit for multivariate Data analysis       *
 * Package: TMVA                                                                  *
 * Class  : MethodPDEFoam                                                         *
 * Web    : http://tmva.sourceforge.net                                           *
 *                                                                                *
 * Description:                                                                   *
 *      The PDEFoam method is an extension of the PDERS method, which divides     *
 *      the multi-dimensional phase space in a finite number of hyper-rectangles  *
 *      (cells) of constant event density. This "foam" of cells is filled with    *
 *      averaged probability-density information sampled from a training event    *
 *      sample.                                                                   *
 *                                                                                *
 * Authors (alphabetical):                                                        *
 *      Tancredi Carli   - CERN, Switzerland                                      *
 *      Dominik Dannheim - CERN, Switzerland                                      *
 *      Peter Speckmayer <peter.speckmayer@cern.ch>  - CERN, Switzerland          *
 *      Alexander Voigt  - TU Dresden, Germany                                    *
 *                                                                                *
 * Original author of the TFoam implementation:                                   *
 *      S. Jadach - Institute of Nuclear Physics, Cracow, Poland                  *
 *                                                                                *
 * Copyright (c) 2008, 2010:                                                      *
 *      CERN, Switzerland                                                         *
 *      MPI-K Heidelberg, Germany                                                 *
 *                                                                                *
 * Redistribution and use in source and binary forms, with or without             *
 * modification, are permitted according to the terms listed in LICENSE           *
 * (http://tmva.sourceforge.net/LICENSE)                                          *
 **********************************************************************************/

#ifndef ROOT_TMVA_MethodPDEFoam
#define ROOT_TMVA_MethodPDEFoam

//////////////////////////////////////////////////////////////////////////////
//                                                                          //
// MethodPDEFoam                                                            //
//                                                                          //
//////////////////////////////////////////////////////////////////////////////

#ifndef ROOT_TMVA_MethodBase
#include "TMVA/MethodBase.h"
#endif

#ifndef ROOT_TMVA_PDEFoam
#include "TMVA/PDEFoam.h"
#endif

#ifndef ROOT_TMVA_PDEFoamDecisionTree
#include "TMVA/PDEFoamDecisionTree.h"
#endif
#ifndef ROOT_TMVA_PDEFoamEvent
#include "TMVA/PDEFoamEvent.h"
#endif
#ifndef ROOT_TMVA_PDEFoamDiscriminant
#include "TMVA/PDEFoamDiscriminant.h"
#endif
#ifndef ROOT_TMVA_PDEFoamTarget
#include "TMVA/PDEFoamTarget.h"
#endif
#ifndef ROOT_TMVA_PDEFoamMultiTarget
#include "TMVA/PDEFoamMultiTarget.h"
#endif

#ifndef ROOT_TMVA_PDEFoamDensityBase
#include "TMVA/PDEFoamDensityBase.h"
#endif
#ifndef ROOT_TMVA_PDEFoamTargetDensity
#include "TMVA/PDEFoamTargetDensity.h"
#endif
#ifndef ROOT_TMVA_PDEFoamEventDensity
#include "TMVA/PDEFoamEventDensity.h"
#endif
#ifndef ROOT_TMVA_PDEFoamDiscriminantDensity
#include "TMVA/PDEFoamDiscriminantDensity.h"
#endif
#ifndef ROOT_TMVA_PDEFoamDecisionTreeDensity
#include "TMVA/PDEFoamDecisionTreeDensity.h"
#endif

#ifndef ROOT_TMVA_PDEFoamKernelBase
#include "TMVA/PDEFoamKernelBase.h"
#endif
#ifndef ROOT_TMVA_PDEFoamKernelTrivial
#include "TMVA/PDEFoamKernelTrivial.h"
#endif
#ifndef ROOT_TMVA_PDEFoamKernelLinN
#include "TMVA/PDEFoamKernelLinN.h"
#endif
#ifndef ROOT_TMVA_PDEFoamKernelGauss
#include "TMVA/PDEFoamKernelGauss.h"
#endif

namespace TMVA {

   class MethodPDEFoam : public MethodBase {

   public:

      // kernel types
      typedef enum EKernel { kNone=0, kGaus=1, kLinN=2 } EKernel;

      MethodPDEFoam( const TString& jobName,
                     const TString& methodTitle,
                     DataSetInfo& dsi,
                     const TString& theOption = "PDEFoam",
                     TDirectory* theTargetDir = 0 );

      MethodPDEFoam( DataSetInfo& dsi,
                     const TString& theWeightFile,
                     TDirectory* theTargetDir = NULL );

      virtual ~MethodPDEFoam( void );

      virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets );

      // training methods
      void Train( void );
      void TrainMonoTargetRegression( void );    // Regression output: one value
      void TrainMultiTargetRegression( void );   // Regression output: any number of values
      void TrainSeparatedClassification( void ); // Classification: one foam for Sig, one for Bg
      void TrainUnifiedClassification( void );   // Classification: one foam for Signal and Bg
      void TrainMultiClassification();           // Classification: one foam for every class

      using MethodBase::ReadWeightsFromStream;

      // write weights to stream
      void AddWeightsXMLTo( void* parent ) const;

      // read weights from stream
      void ReadWeightsFromStream( std::istream & i );
      void ReadWeightsFromXML   ( void* wghtnode );

      // write/read pure foams to/from file
      void WriteFoamsToFile() const;
      void ReadFoamsFromFile();
      PDEFoam* ReadClonedFoamFromFile(TFile*, const TString&);

      // calculate the MVA value
      Double_t GetMvaValue( Double_t* err = 0, Double_t* errUpper = 0 );

      // calculate multiclass MVA values
      const std::vector<Float_t>& GetMulticlassValues();

      // regression procedure
      virtual const std::vector<Float_t>& GetRegressionValues();

      // reset the method
      virtual void Reset();

      // ranking of input variables
      const Ranking* CreateRanking();

      // get number of cuts in every dimension, starting at cell
      void GetNCuts(PDEFoamCell *cell, std::vector<UInt_t> &nCuts);

      // helper functions to convert enum types to UInt_t and back
      EKernel GetKernel( void ) { return fKernel; }
      UInt_t KernelToUInt(EKernel ker) const { return UInt_t(ker); }
      EKernel UIntToKernel(UInt_t iker);
      UInt_t TargetSelectionToUInt(ETargetSelection ts) const { return UInt_t(ts); }
      ETargetSelection UIntToTargetSelection(UInt_t its);

   protected:

      // make ROOT-independent C++ class for classifier response (classifier-specific implementation)
      void MakeClassSpecific( std::ostream&, const TString& ) const;

      // get help message text
      void GetHelpMessage() const;

      // calculate the error on the Mva value
      Double_t CalculateMVAError();

      // calculate Xmin and Xmax for Foam
      void CalcXminXmax();

      // Set Xmin, Xmax in foam with index 'foam_index'
      void SetXminXmax(TMVA::PDEFoam*);

      // create foam and set foam options
      PDEFoam* InitFoam(TString, EFoamType, UInt_t cls=0);

      // create pdefoam kernel
      PDEFoamKernelBase* CreatePDEFoamKernel();

      // delete all trained foams
      void DeleteFoams();

      // fill variable names into foam
      void FillVariableNamesToFoam() const;

   private:

      // the option handling methods
      void DeclareOptions();
      void DeclareCompatibilityOptions();
      void ProcessOptions();

      // nice output
      void PrintCoefficients( void );

      // Square function (fastest implementation)
      template<typename T> T Sqr(T x) const { return x*x; }

      // options to be used
      Bool_t        fSigBgSeparated;  // Separate Sig and Bg, or not
      Float_t       fFrac;            // Fraction used for calc of Xmin, Xmax
      Float_t       fDiscrErrCut;     // cut on discrimant error
      Float_t       fVolFrac;         // volume fraction (used for density calculation during buildup)
      Int_t         fnCells;          // Number of Cells  (1000)
      Int_t         fnActiveCells;    // Number of active cells
      Int_t         fnSampl;          // Number of MC events per cell in build-up (1000)
      Int_t         fnBin;            // Number of bins in build-up (100)
      Int_t         fEvPerBin;        // Maximum events (equiv.) per bin in buid-up (1000)

      Bool_t        fCompress;        // compress foam output file
      Bool_t        fMultiTargetRegression; // do regression on multible targets
      UInt_t        fNmin;            // minimal number of events in cell necessary to split cell"
      Bool_t        fCutNmin;         // Keep for bw compatibility: Grabbing cell with maximal RMS to split next (TFoam default)
      UInt_t        fMaxDepth;        // maximum depth of cell tree

      TString       fKernelStr;       // Kernel for GetMvaValue() (option string)
      EKernel       fKernel;          // Kernel for GetMvaValue()
      PDEFoamKernelBase *fKernelEstimator;// Kernel estimator
      TString       fTargetSelectionStr; // method of selecting the target (only mulit target regr.)
      ETargetSelection fTargetSelection; // method of selecting the target (only mulit target regr.)
      Bool_t        fFillFoamWithOrigWeights; // fill the foam with boost weights
      Bool_t        fUseYesNoCell;    // return -1 or 1 for bg or signal like event
      TString       fDTLogic;         // use DT algorithm to split cells
      EDTSeparation fDTSeparation;    // enum which specifies the separation to use for the DT logic
      Bool_t        fPeekMax;         // BACKWARDS COMPATIBILITY: peek up cell with max. driver integral for split

      std::vector<Float_t> fXmin, fXmax; // range for histograms and foams

      std::vector<PDEFoam*> fFoam;    // grown PDEFoams

      // default initialisation called by all constructors
      void Init( void );

      ClassDef(MethodPDEFoam,0) // Multi-dimensional probability density estimator using TFoam (PDE-Foam)
   };

} // namespace TMVA

#endif // MethodPDEFoam_H