/usr/include/root/TMVA/SeparationBase.h is in libroot-tmva-dev 5.34.30-0ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | // @(#)root/tmva $Id$
// Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss
/**********************************************************************************
* Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
* Package: TMVA *
* Class : SeparationBase *
* Web : http://tmva.sourceforge.net *
* *
* Description: An interface to different separation critiera useded in various *
* training algorithms, as there are: *
* Gini-Index, Cross Entropy, Misclassification Error, e.t.c. *
* *
* There are two things: the Separation Index, and the Separation Gain *
* Separation Index: *
* Measure of the "purity" of a sample. If all elements (events) in the *
* sample belong to the same class (e.g. signal or backgr), than the *
* separation index is 0 (meaning 100% purity (or 0% purity as it is *
* symmetric. The index becomes maximal, for perfectly mixed samples *
* eg. purity=50% , N_signal = N_bkg *
* *
* Separation Gain: *
* the measure of how the quality of separation of the sample increases *
* by splitting the sample e.g. into a "left-node" and a "right-node" *
* (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) *
* this is then the quality crition which is optimized for when trying *
* to increase the information in the system (making the best selection *
* *
* *
* Authors (alphabetical): *
* Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
* Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
* Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
* *
* Copyright (c) 2005: *
* CERN, Switzerland *
* U. of Victoria, Canada *
* Heidelberg U., Germany *
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted according to the terms listed in LICENSE *
* (http://tmva.sourceforge.net/LICENSE) *
**********************************************************************************/
#ifndef ROOT_TMVA_SeparationBase
#define ROOT_TMVA_SeparationBase
//////////////////////////////////////////////////////////////////////////
// //
// SeparationBase //
// //
// An interface to calculate the "SeparationGain" for different //
// separation critiera used in various training algorithms //
// //
// There are two things: the Separation Index, and the Separation Gain //
// Separation Index: //
// Measure of the "purity" of a sample. If all elements (events) in the //
// sample belong to the same class (e.g. signal or backgr), than the //
// separation index is 0 (meaning 100% purity (or 0% purity as it is //
// symmetric. The index becomes maximal, for perfectly mixed samples //
// eg. purity=50% , N_signal = N_bkg //
// //
// Separation Gain: //
// the measure of how the quality of separation of the sample increases //
// by splitting the sample e.g. into a "left-node" and a "right-node" //
// (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) //
// this is then the quality crition which is optimized for when trying //
// to increase the information in the system (making the best selection //
// //
//////////////////////////////////////////////////////////////////////////
#ifndef ROOT_Rtypes
#include "Rtypes.h"
#endif
#ifndef ROOT_TString
#include "TString.h"
#endif
#ifndef ROOT_TMath
#include "TMath.h"
#endif
#include <limits>
namespace TMVA {
class SeparationBase {
public:
// default constructor
SeparationBase();
//copy constructor
SeparationBase( const SeparationBase& s );
// destructor
virtual ~SeparationBase(){}
// Return the gain in separation of the original sample is splitted in two sub-samples
// (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right)
virtual Double_t GetSeparationGain( const Double_t& nSelS, const Double_t& nSelB,
const Double_t& nTotS, const Double_t& nTotB );
// Return the separation index (a measure for "purity" of the sample")
virtual Double_t GetSeparationIndex( const Double_t &s, const Double_t &b ) = 0;
// Return the name of the concrete Index implementation
const TString& GetName() { return fName; }
protected:
TString fName; // name of the concrete Separation Index impementation
Double_t fPrecisionCut;
ClassDef(SeparationBase,0) // Interface to different separation critiera used in training algorithms
};
} // namespace TMVA
#endif
|