This file is indexed.

/usr/include/root/TMVA/SeparationBase.h is in libroot-tmva-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
// @(#)root/tmva $Id$
// Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss 

/**********************************************************************************
 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
 * Package: TMVA                                                                  *
 * Class  : SeparationBase                                                        *
 * Web    : http://tmva.sourceforge.net                                           *
 *                                                                                *
 * Description: An interface to different separation critiera useded in various   *
 *              training algorithms, as there are:                                *
 *              Gini-Index, Cross Entropy, Misclassification Error, e.t.c.        *
 *                                                                                *
 *          There are two things: the Separation Index, and the Separation Gain   *
 *          Separation Index:                                                     *
 *          Measure of the "purity" of a sample. If all elements (events) in the  *
 *          sample belong to the same class (e.g. signal or backgr), than the     *
 *          separation index is 0 (meaning 100% purity (or 0% purity as it is     *
 *          symmetric. The index becomes maximal, for perfectly mixed samples     *
 *          eg. purity=50% , N_signal = N_bkg                                     *
 *                                                                                *
 *          Separation Gain:                                                      *
 *          the measure of how the quality of separation of the sample increases  *
 *          by splitting the sample e.g. into a "left-node" and a "right-node"    *
 *          (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right)  *
 *          this is then the quality crition which is optimized for when trying   *
 *          to increase the information in the system (making the best selection  *
 *                                                                                *
 *                                                                                *
 * Authors (alphabetical):                                                        *
 *      Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland              *
 *      Helge Voss      <Helge.Voss@cern.ch>     - MPI-K Heidelberg, Germany      *
 *      Kai Voss        <Kai.Voss@cern.ch>       - U. of Victoria, Canada         *
 *                                                                                *
 * Copyright (c) 2005:                                                            *
 *      CERN, Switzerland                                                         * 
 *      U. of Victoria, Canada                                                    * 
 *      Heidelberg U., Germany                                                    * 
 *                                                                                *
 * Redistribution and use in source and binary forms, with or without             *
 * modification, are permitted according to the terms listed in LICENSE           *
 * (http://tmva.sourceforge.net/LICENSE)                                          *
 **********************************************************************************/

#ifndef ROOT_TMVA_SeparationBase
#define ROOT_TMVA_SeparationBase

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// SeparationBase                                                       //
//                                                                      //
// An interface to calculate the "SeparationGain" for different         //
// separation critiera used in various training algorithms              //
//                                                                      //
// There are two things: the Separation Index, and the Separation Gain  //
// Separation Index:                                                    //
// Measure of the "purity" of a sample. If all elements (events) in the //
// sample belong to the same class (e.g. signal or backgr), than the    //
// separation index is 0 (meaning 100% purity (or 0% purity as it is    //
// symmetric. The index becomes maximal, for perfectly mixed samples    //
// eg. purity=50% , N_signal = N_bkg                                    //
//                                                                      //
// Separation Gain:                                                     //
// the measure of how the quality of separation of the sample increases //
// by splitting the sample e.g. into a "left-node" and a "right-node"   //
// (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) //
// this is then the quality crition which is optimized for when trying  //
// to increase the information in the system (making the best selection //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#ifndef ROOT_Rtypes
#include "Rtypes.h"
#endif

#ifndef ROOT_TString
#include "TString.h"
#endif

#ifndef ROOT_TMath
#include "TMath.h"
#endif

#include <limits>

namespace TMVA {

   class SeparationBase {

   public:

      // default constructor
      SeparationBase();

      //copy constructor
      SeparationBase( const SeparationBase& s );

      // destructor
      virtual ~SeparationBase(){}

      // Return the gain in separation of the original sample is splitted in two sub-samples
      // (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right)
      virtual Double_t GetSeparationGain( const Double_t& nSelS, const Double_t& nSelB,
                                  const Double_t& nTotS, const Double_t& nTotB );

      // Return the separation index (a measure for "purity" of the sample")
      virtual Double_t GetSeparationIndex( const Double_t &s, const Double_t &b ) = 0;

      // Return the name of the concrete Index implementation
      const TString& GetName() { return fName; }

   protected:

      TString fName;  // name of the concrete Separation Index impementation

      Double_t fPrecisionCut;

      ClassDef(SeparationBase,0) // Interface to different separation critiera used in training algorithms
   };


} // namespace TMVA

#endif