This file is indexed.

/usr/include/shark/Models/ConcatenatedModel.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
//===========================================================================
/*!
 * 
 *
 * \brief       concatenation of two models, with type erasure
 * 
 * 
 *
 * \author      O. Krause
 * \date        2010-2011
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================

#ifndef SHARK_MODEL_CONCATENATEDMODEL_H
#define SHARK_MODEL_CONCATENATEDMODEL_H

#include <shark/Models/AbstractModel.h>
#include <boost/scoped_ptr.hpp>
#include <boost/serialization/scoped_ptr.hpp>

namespace shark {

namespace detail{


///\brief Baseclass for the wrapper which is used to hide the matrix type. 
///
///Additional to the requirement of a Model, a clone() method must be implemented which is used to
///copy a wrapper
template<class InputType, class OutputType>
class ConcatenatedModelWrapperBase:public AbstractModel<InputType,OutputType>{
public:
	ConcatenatedModelWrapperBase():m_optimizeFirst(true), m_optimizeSecond(true){}
	virtual ConcatenatedModelWrapperBase<InputType,OutputType>* clone() const = 0;

	bool optimizeFirstModelParameters()const{
		return m_optimizeFirst;
	}
	
	bool& optimizeFirstModelParameters(){
		return m_optimizeFirst;
	}
	
	bool optimizeSecondModelParameters()const{
		return m_optimizeSecond;
	}
	
	bool& optimizeSecondModelParameters(){
		return m_optimizeSecond;
	}
protected:
	bool m_optimizeFirst;
	bool m_optimizeSecond;
};

///\brief Internal Wrappertype to connect the output of the first model with the input of the second model.
///
///This model is also created when concatenating two models with operator>> (firstModel>>secondModel)
template<class InputType, class IntermediateType, class OutputType>
class ConcatenatedModelWrapper : public ConcatenatedModelWrapperBase<InputType, OutputType> {
protected:
	typedef typename AbstractModel<InputType,IntermediateType>::BatchOutputType BatchIntermediateType;
	AbstractModel<InputType,IntermediateType>* m_firstModel;
	AbstractModel<IntermediateType,OutputType>* m_secondModel;

	typedef ConcatenatedModelWrapperBase<InputType, OutputType> base_type;
	using base_type::m_optimizeFirst;
	using base_type::m_optimizeSecond;

	struct InternalState: public State{
		BatchIntermediateType intermediateResult;
		boost::shared_ptr<State> firstModelState;
		boost::shared_ptr<State> secondModelState;
	};
public:
	typedef typename base_type::BatchInputType BatchInputType;
	
	typedef typename base_type::BatchOutputType BatchOutputType;
	ConcatenatedModelWrapper(
		AbstractModel<InputType, IntermediateType>* firstModel,
		AbstractModel<IntermediateType, OutputType>* secondModel)
	: m_firstModel(firstModel), m_secondModel(secondModel)
	{
		if (firstModel->hasFirstParameterDerivative()
			&& secondModel->hasFirstParameterDerivative()
			&& secondModel ->hasFirstInputDerivative())
		{ 
			this->m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE;
		}

		if (firstModel->hasFirstInputDerivative()
			&& secondModel->hasFirstInputDerivative())
		{ 
			this->m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE;
		}
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "Concatenation<" + m_firstModel->name() + "," + m_secondModel->name() + ">"; }

	ConcatenatedModelWrapperBase<InputType, OutputType>* clone()const{
		return new ConcatenatedModelWrapper<InputType, IntermediateType, OutputType>(*this);
	}

	RealVector parameterVector() const {
		RealVector params(numberOfParameters());
		if(m_optimizeFirst && m_optimizeSecond)
			init(params) << parameters(*m_firstModel), parameters(*m_secondModel);
		else if (m_optimizeFirst)
			params = m_firstModel->parameterVector();
		else if (m_optimizeSecond)
			params = m_secondModel->parameterVector();
		return params;
	}

	void setParameterVector(RealVector const& newParameters) {
		if(m_optimizeFirst && m_optimizeSecond)
			init(newParameters) >> parameters(*m_firstModel), parameters(*m_secondModel);
		else if (m_optimizeFirst)
			m_firstModel->setParameterVector(newParameters);
		else if (m_optimizeSecond)
			m_secondModel->setParameterVector(newParameters);
		
	}
	
	boost::shared_ptr<State> createState()const{
		InternalState* state = new InternalState();
		boost::shared_ptr<State> ptrState(state);
		state->firstModelState = m_firstModel->createState();
		state->secondModelState = m_secondModel->createState();
		return ptrState;
	}

	std::size_t numberOfParameters() const {
		std::size_t numParams = 0;
		if(m_optimizeFirst)
			numParams += m_firstModel->numberOfParameters();
		if (m_optimizeSecond)
			numParams += m_secondModel->numberOfParameters();
		return numParams;
			
	}

	void eval( BatchInputType const& patterns, BatchOutputType& outputs)const{
		m_secondModel->eval(
			(*m_firstModel)(patterns), 
			outputs
		);
	}

	void eval( BatchInputType const& patterns, BatchOutputType& outputs, State& state)const{
		InternalState& s = state.toState<InternalState>();
		m_firstModel->eval(patterns, s.intermediateResult,*s.firstModelState);
		m_secondModel->eval(s.intermediateResult, outputs,*s.secondModelState);
	}

	void weightedParameterDerivative(
		BatchInputType const& patterns, BatchOutputType const& coefficients, State const& state, RealVector& gradient
	)const{
		InternalState const& s = state.toState<InternalState>();

		//don't compute the derivative of the first model if it does not have parameters.
		std::size_t numParamsFirst = m_firstModel->numberOfParameters();
		if(m_optimizeFirst && m_optimizeSecond && numParamsFirst != 0){
			RealVector firstParameterDerivative;
			BatchIntermediateType secondInputDerivative;
			RealVector secondParameterDerivative;
			
			m_secondModel->weightedDerivatives(
				s.intermediateResult,coefficients,*s.secondModelState,
				secondParameterDerivative,secondInputDerivative
			);
			m_firstModel->weightedParameterDerivative(patterns,secondInputDerivative,*s.firstModelState,firstParameterDerivative);
			
			gradient.resize(numberOfParameters());
			init(gradient)<<firstParameterDerivative,secondParameterDerivative;
		}else if(m_optimizeFirst && numParamsFirst != 0){
			RealVector firstParameterDerivative;
			BatchIntermediateType secondInputDerivative;
			
			m_secondModel->weightedInputDerivative(
				s.intermediateResult,coefficients,*s.secondModelState,secondInputDerivative
			);
			m_firstModel->weightedParameterDerivative(patterns,secondInputDerivative,*s.firstModelState,gradient);
		}else if(m_optimizeSecond){
			m_secondModel->weightedParameterDerivative(
				s.intermediateResult,coefficients,*s.secondModelState,
				gradient
			);
		}else {
			gradient.resize(0);
		}
	}

	void weightedInputDerivative(
		BatchInputType const& patterns, BatchOutputType const& coefficients, State const& state, BatchOutputType& gradient
	)const{
		InternalState const& s = state.toState<InternalState>();
		BatchIntermediateType secondInputDerivative;
		m_secondModel->weightedInputDerivative(s.intermediateResult, coefficients, *s.secondModelState, secondInputDerivative);
		m_firstModel->weightedInputDerivative(patterns, secondInputDerivative, *s.firstModelState, gradient);
	}
	
	//special implementation, because we can reuse the input derivative of the second model for the calculation of both derivatives of the first
	virtual void weightedDerivatives(
		BatchInputType const & patterns, 
		BatchOutputType const & coefficients, 
		State const& state,
		RealVector& parameterDerivative,
		BatchInputType& inputDerivative
	)const{
		InternalState const& s = state.toState<InternalState>();
		std::size_t firstParam=m_firstModel->numberOfParameters();
		std::size_t secondParam=m_secondModel->numberOfParameters();
		parameterDerivative.resize(firstParam+secondParam);

		RealVector firstParameterDerivative;
		BatchIntermediateType secondInputDerivative;
		RealVector secondParameterDerivative;
		if(m_optimizeSecond){
			m_secondModel->weightedDerivatives(
				s.intermediateResult, coefficients, *s.firstModelState, secondParameterDerivative, secondInputDerivative
			);
		}else{
			m_secondModel->weightedInputDerivative(
				s.intermediateResult, coefficients, *s.firstModelState, secondInputDerivative
			);
		}
		if(m_optimizeFirst){
			m_firstModel->weightedDerivatives(
				patterns, secondInputDerivative, *s.secondModelState, parameterDerivative, inputDerivative
			);
		}else{
			m_firstModel->weightedInputDerivative(
				patterns, secondInputDerivative, *s.secondModelState, inputDerivative
			);
		}

		parameterDerivative.resize(firstParam+secondParam);
		init(parameterDerivative)<<firstParameterDerivative,secondParameterDerivative;
	}
	/// From ISerializable
	void read( InArchive & archive ){
		m_firstModel->read(archive);
		m_secondModel->read(archive);
		archive >> m_optimizeFirst;
		archive >> m_optimizeSecond;
	}

	/// From ISerializable
	void write( OutArchive & archive ) const{
		m_firstModel->write(archive);
		m_secondModel->write(archive);
		archive << m_optimizeFirst;
		archive << m_optimizeSecond;
	}
};

///\brief When using operator>> to connect more than two models, this type is created.
///
///When concatenating two models, the ConcatenatedModelWrapper is created. But it is only a temporary object. 
///Thus when concatenating it with another model, it must be made persistent. We do that by simply calling clone() and saving the now
///persistens pointer. Note, that the right-hand-side is not allowed to be a ConcatenatedModelWrapperBase. This is not checked.
template<class InputType, class IntermediateType, class OutputType>
class ConcatenatedModelList:public ConcatenatedModelWrapper<InputType,IntermediateType,OutputType>{
private:
	typedef ConcatenatedModelWrapper<InputType,IntermediateType,OutputType> base_type;
	typedef ConcatenatedModelWrapperBase<InputType,IntermediateType> FirstModelType;
public:	

	ConcatenatedModelList(
		const FirstModelType& firstModel,
		AbstractModel<IntermediateType, OutputType>* secondModel
	):base_type(firstModel.clone(),secondModel){
		if (base_type::m_firstModel->hasFirstParameterDerivative()
			&& secondModel->hasFirstParameterDerivative()
			&& secondModel ->hasFirstInputDerivative())
		{ 
			this->m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE;
		}

		if (base_type::m_firstModel->hasFirstInputDerivative()
			&& secondModel->hasFirstInputDerivative())
		{ 
			this->m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE;
		}
	}

	~ConcatenatedModelList(){
		delete base_type::m_firstModel;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "Concatenation<" + base_type::m_firstModel->name() + "," + base_type::m_secondModel->name() + ">"; }

	ConcatenatedModelWrapperBase<InputType, OutputType>* clone()const{
		return new ConcatenatedModelList<InputType, IntermediateType, OutputType>(
			*static_cast<FirstModelType*>(base_type::m_firstModel),//get the type information back
			base_type::m_secondModel
		);
	}
};

}

///\brief Connects two AbstractModels so that the output of the first model is the input of the second.
///
///The type of the output of the first model must match the type of the input of the second model exactly.
template<class InputT,class IntermediateT,class OutputT>
detail::ConcatenatedModelWrapper<InputT,IntermediateT,OutputT> 
operator>>(AbstractModel<InputT,IntermediateT>& firstModel,AbstractModel<IntermediateT,OutputT>& secondModel){
	return detail::ConcatenatedModelWrapper<InputT,IntermediateT,OutputT> (&firstModel,&secondModel);
}

///\brief Connects another AbstractModel two a previously created connection of models
template<class InputT,class IntermediateT,class OutputT>
detail::ConcatenatedModelList<InputT,IntermediateT,OutputT> 
operator>>(
	const detail::ConcatenatedModelWrapperBase<InputT,IntermediateT>& firstModel,
	AbstractModel<IntermediateT,OutputT>& secondModel
){
	return detail::ConcatenatedModelList<InputT,IntermediateT,OutputT> (firstModel,&secondModel);
}



///\brief ConcatenatedModel concatenates two models such that the output of the first model is input to the second.
///
///Sometimes a series of models is needed to generate the desired output. For example when input data needs to be 
///normalized before it can be put into the trained model. In this case, the ConcatenatedModel can be used to 
///represent this series as one model. 
///The easiest way to do is is using the operator >> of AbstractModel:
///ConcatenatedModel<InputType,OutputType> model = model1>>model2;
///InputType must be the type of input model1 receives and model2 the output of model2. The output of model1 and input
///of model2 must match. Another way of construction is calling the constructor of ConcatenatedModel using the constructor:
/// ConcatenatedModel<InputType,OutputType> model (&modell,&model2);
///warning: model1 and model2 must outlive model. When they are destroyed first, behavior is undefined.
template<class InputType, class OutputType>
class ConcatenatedModel: public AbstractModel<InputType,OutputType> {
private:
	boost::scoped_ptr<detail::ConcatenatedModelWrapperBase<InputType, OutputType> > m_wrapper;
	typedef AbstractModel<InputType, OutputType> base_type;

public:
	typedef typename base_type::BatchInputType BatchInputType;
	typedef typename base_type::BatchOutputType BatchOutputType;


	///creates a concatenated model using two base model. this is equivalent to concModel = *firstModel >> *secondModel;
	template<class T>
	ConcatenatedModel(AbstractModel<InputType, T>* firstModel, AbstractModel<T, OutputType>* secondModel) {
		m_wrapper.reset(new detail::ConcatenatedModelWrapper<InputType, T, OutputType>(firstModel, secondModel));
		if (m_wrapper->hasFirstParameterDerivative()){ 
			this->m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE; 
		}

		if (m_wrapper->hasFirstInputDerivative()){ 
			this->m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE; 
		}
	}
	///copy constructor to allow ConcatenatedModel concModel = model1 >> model2 >> model3;
	ConcatenatedModel(const detail::ConcatenatedModelWrapperBase<InputType,OutputType>& wrapper) {
		m_wrapper.reset(wrapper.clone());
		if (m_wrapper->hasFirstParameterDerivative()){ 
			this->m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE; 
		}

		if (m_wrapper->hasFirstInputDerivative()){ 
			this->m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE; 
		}
	}
	///operator =  to allow concModel = model1 >> model2 >> model3; for a previously declared concatenadel model
	ConcatenatedModel<InputType,OutputType>& operator = ( detail::ConcatenatedModelWrapperBase<InputType,OutputType>& wrapper ){
		m_wrapper.reset(wrapper.clone());
		if (m_wrapper->hasFirstParameterDerivative()){ 
			this->m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE; 
		}

		if (m_wrapper->hasFirstInputDerivative()){ 
			this->m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE; 
		}

		return *this;
	}
	
	/// \brief Returns whether the parameters of the first model are going to be optimized
	///
	/// Remember that concatModel = first >> second, so it is the lower layer.
	bool optimizeFirstModelParameters()const{
		return m_wrapper->optimizeFirstModelParameters();
	}
	
	/// \brief Returns a variable indicting whether the parameters of the first model are going to be optimized
	///
	/// Remember that concatModel = first >> second, so it is the lower layer.
	bool& optimizeFirstModelParameters(){
		return m_wrapper->optimizeFirstModelParameters();
	}
	
	/// \brief Returns whether the parameters of the second model are going to be optimized
	///
	/// Remember that concatModel = first >> second, so it is the upper layer.
	bool optimizeSecondModelParameters()const{
		return m_wrapper->optimizeSecondModelParameters();
	}
	
	/// \brief Returns a variable indicting whether the parameters of the second model are going to be optimized
	///
	/// Remember that concatModel = first >> second, so it is the upper layer.
	bool& optimizeSecondModelParameters(){
		return m_wrapper->optimizeSecondModelParameters();
	}

	ConcatenatedModel(const ConcatenatedModel<InputType, OutputType>& src)
	:m_wrapper(src.m_wrapper->clone()) {
		this->m_features = src.m_features;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return m_wrapper->name(); }

	const ConcatenatedModel<InputType,OutputType>& operator = (const ConcatenatedModel<InputType, OutputType>& src) {
		ConcatenatedModel<InputType,OutputType> copy(src);
		swap(m_wrapper,copy.m_wrapper);
		std::swap(base_type::m_features,copy.m_features);
		return *this;
	}

	RealVector parameterVector() const {
		return m_wrapper->parameterVector();
	}

	void setParameterVector(RealVector const& newParameters) {
		m_wrapper->setParameterVector(newParameters);
	}

	size_t numberOfParameters() const {
		return m_wrapper->numberOfParameters();
	}
	
	boost::shared_ptr<State> createState()const{
		return m_wrapper->createState();
	}

	using base_type::eval;
	void eval(BatchInputType const& patterns, BatchOutputType& outputs)const {
		m_wrapper->eval(patterns, outputs);
	}
	void eval(BatchInputType const& patterns, BatchOutputType& outputs, State& state)const {
		m_wrapper->eval(patterns, outputs, state);
	}
	
	void weightedParameterDerivative(
		BatchInputType const& patterns, BatchOutputType const& coefficients, State const& state, RealVector& gradient
	)const{
		m_wrapper->weightedParameterDerivative(patterns, coefficients, state, gradient);
	}

	void weightedInputDerivative(
		BatchInputType const& patterns, BatchOutputType const& coefficients, State const& state, BatchOutputType& derivatives
	)const{
		m_wrapper->weightedInputDerivative(patterns, coefficients, state, derivatives);
	}

	virtual void weightedDerivatives(
		BatchInputType const & patterns,
		BatchOutputType const & coefficients,
		State const& state,
		RealVector& parameterDerivative,
		BatchInputType& inputDerivative
	)const{
		m_wrapper->weightedDerivatives(patterns, coefficients, state, parameterDerivative,inputDerivative);
	}

	/// From ISerializable
	void read( InArchive & archive ){
		m_wrapper->read(archive);
	}

	/// From ISerializable
	void write( OutArchive & archive ) const{
		m_wrapper->write(archive);
	}
};


}
#endif