/usr/include/shogun/evaluation/ContingencyTableEvaluation.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2011 Sergey Lisitsyn
* Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
*/
#ifndef CONTINGENCYTABLEEVALUATION_H_
#define CONTINGENCYTABLEEVALUATION_H_
#include <shogun/evaluation/BinaryClassEvaluation.h>
#include <shogun/labels/Labels.h>
#include <shogun/mathematics/Math.h>
#include <shogun/io/SGIO.h>
namespace shogun
{
class CLabels;
/** type of measure */
enum EContingencyTableMeasureType
{
ACCURACY = 0,
ERROR_RATE = 10,
BAL = 20,
WRACC = 30,
F1 = 40,
CROSS_CORRELATION = 50,
RECALL = 60,
PRECISION = 70,
SPECIFICITY = 80,
CUSTOM = 999
};
/** @brief The class ContingencyTableEvaluation
* a base class used to evaluate 2-class classification
* with TP, FP, TN, FN rates.
*
* This class has implementations of the measures listed below:
*
* Accuracy (ACCURACY): \f$ \frac{TP+TN}{N} \f$
*
* Error rate (ERROR_RATE): \f$ \frac{FP+FN}{N} \f$
*
* Balanced error (BAL): \f$ \frac{1}{2} \left( \frac{FN}{FN+TP} + \frac{FP}{FP+TN} \right) \f$
*
* Weighted relative accuracy (WRACC): \f$ \frac{TP}{TP+FN} - \frac{FP}{FP+TN} \f$
*
* F1 score (F1): \f$ \frac{2\cdot FP}{2\cdot TP + FP + FN} \f$
*
* Cross correlation coefficient (CROSS_CORRELATION):
* \f$ \frac{TP\cdot TN - FP \cdot FN}{\sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}} \f$
*
* Recall (RECALL): \f$ \frac{TP}{TP+FN} \f$
*
* Precision (PRECISION): \f$ \frac{TP}{TP+FP} \f$
*
* Specificity (SPECIFICITY): \f$ \frac{TN}{TN+FP} \f$
*
* Note that objects of this class should be used only if
* computing of many different measures is required. In other case,
* using helper classes (CAccuracyMeasure, ...) could be more
* convenient.
*
*/
class CContingencyTableEvaluation: public CBinaryClassEvaluation
{
public:
/** constructor */
CContingencyTableEvaluation() :
CBinaryClassEvaluation(), m_type(ACCURACY), m_computed(false) {};
/** constructor
* @param type type of measure (e.g ACCURACY)
*/
CContingencyTableEvaluation(EContingencyTableMeasureType type) :
CBinaryClassEvaluation(), m_type(type), m_computed(false) {};
/** destructor */
virtual ~CContingencyTableEvaluation() {};
/** evaluate labels
* @param predicted labels
* @param ground_truth labels assumed to be correct
* @return evaluation result
*/
virtual float64_t evaluate(CLabels* predicted, CLabels* ground_truth);
virtual EEvaluationDirection get_evaluation_direction() const;
/** get name */
virtual const char* get_name() const
{
return "ContingencyTableEvaluation";
}
/** accuracy
* @return computed accuracy
*/
inline float64_t get_accuracy() const
{
if (!m_computed)
SG_ERROR("Uninitialized, please call evaluate first")
return (m_TP+m_TN)/m_N;
};
/** error rate
* @return computed error rate
*/
inline float64_t get_error_rate() const
{
if (!m_computed)
SG_ERROR("Uninitialized, please call evaluate first")
return (m_FP + m_FN)/m_N;
};
/** Balanced error (BAL)
* @return computed BAL
*/
inline float64_t get_BAL() const
{
if (!m_computed)
SG_ERROR("Uninitialized, please call evaluate first")
return 0.5*(m_FN/(m_FN + m_TP) + m_FP/(m_FP + m_TN));
};
/** WRACC
* @return computed WRACC
*/
inline float64_t get_WRACC() const
{
if (!m_computed)
SG_ERROR("Uninitialized, please call evaluate first")
return m_TP/(m_FN + m_TP) - m_FP/(m_FP + m_TN);
};
/** F1
* @return computed F1 score
*/
inline float64_t get_F1() const
{
if (!m_computed)
SG_ERROR("Uninitialized, please call evaluate first")
return (2*m_TP)/(2*m_TP + m_FP + m_FN);
};
/** cross correlation
* @return computed cross correlation coefficient
*/
inline float64_t get_cross_correlation() const
{
if (!m_computed)
SG_ERROR("Uninitialized, please call evaluate first")
return (m_TP*m_TN-m_FP*m_FN)/CMath::sqrt((m_TP+m_FP)*(m_TP+m_FN)*(m_TN+m_FP)*(m_TN+m_FN));
};
/** recall
* @return computed recall
*/
inline float64_t get_recall() const
{
if (!m_computed)
SG_ERROR("Uninitialized, please call evaluate first")
return m_TP/(m_TP+m_FN);
};
/** precision
* @return computed precision
*/
inline float64_t get_precision() const
{
if (!m_computed)
SG_ERROR("Uninitialized, please call evaluate first")
return m_TP/(m_TP+m_FP);
};
/** specificity
* @return computed specificity
*/
inline float64_t get_specificity() const
{
if (!m_computed)
SG_ERROR("Uninitialized, please call evaluate first")
return m_TN/(m_TN+m_FP);
};
/** Returns number of True Positives
* @return number of true positives
*/
float64_t get_TP() const
{
return m_TP;
}
/** Returns number of False Positives
* @return number of false positives
*/
float64_t get_FP() const
{
return m_FP;
}
/** Returns number of True Negatives
* @return number of true negatives
*/
float64_t get_TN() const
{
return m_TN;
}
/** Returns number of True Negatives
* @return number of false negatives
*/
float64_t get_FN() const
{
return m_FN;
}
/** Computes custom score, not implemented
* @return custom score value
*/
virtual float64_t get_custom_score()
{
SG_NOTIMPLEMENTED
return 0.0;
}
/** Returns custom direction, not implemented
* @return direction of custom score
*/
virtual EEvaluationDirection get_custom_direction() const
{
SG_NOTIMPLEMENTED
return ED_MAXIMIZE;
}
protected:
/** get scores for TP, FP, TN, FN */
void compute_scores(CBinaryLabels* predicted, CBinaryLabels* ground_truth);
/** type of measure to evaluate */
EContingencyTableMeasureType m_type;
/** indicator of contingencies being computed */
bool m_computed;
/** total number of labels */
int32_t m_N;
/** number of true positive examples */
float64_t m_TP;
/** number of false positive examples */
float64_t m_FP;
/** number of true negative examples */
float64_t m_TN;
/** number of false negative examples */
float64_t m_FN;
};
/** @brief class AccuracyMeasure
* used to measure accuracy of 2-class classifier.
*
* This class is also capable of measuring
* any other rate using get_[measure name] methods
* of CContingencyTableEvaluation class.
*
* Note that evaluate() should be called first.
*/
class CAccuracyMeasure: public CContingencyTableEvaluation
{
public:
/* constructor */
CAccuracyMeasure() : CContingencyTableEvaluation(ACCURACY) {};
/* virtual destructor */
virtual ~CAccuracyMeasure() {};
/* name */
virtual const char* get_name() const { return "AccuracyMeasure"; };
};
/** @brief class ErrorRateMeasure
* used to measure error rate of 2-class classifier.
*
* This class is also capable of measuring
* any other rate using get_[measure name] methods
* of CContingencyTableEvaluation class.
*
* Note that evaluate() should be called first.
*/
class CErrorRateMeasure: public CContingencyTableEvaluation
{
public:
/* constructor */
CErrorRateMeasure() : CContingencyTableEvaluation(ERROR_RATE) {};
/* virtual destructor */
virtual ~CErrorRateMeasure() {};
/* name */
virtual const char* get_name() const { return "ErrorRateMeasure"; };
};
/** @brief class BALMeasure
* used to measure balanced error of 2-class classifier.
*
* This class is also capable of measuring
* any other rate using get_[measure name] methods
* of CContingencyTableEvaluation class.
*
* Note that evaluate() should be called first.
*/
class CBALMeasure: public CContingencyTableEvaluation
{
public:
/* constructor */
CBALMeasure() : CContingencyTableEvaluation(BAL) {};
/* virtual destructor */
virtual ~CBALMeasure() {};
/* name */
virtual const char* get_name() const { return "BALMeasure"; };
};
/** @brief class WRACCMeasure
* used to measure weighted relative accuracy of 2-class classifier.
*
* This class is also capable of measuring
* any other rate using get_[measure name] methods
* of CContingencyTableEvaluation class.
*
* Note that evaluate() should be called first.
*/
class CWRACCMeasure: public CContingencyTableEvaluation
{
public:
/* constructor */
CWRACCMeasure() : CContingencyTableEvaluation(WRACC) {};
/* virtual destructor */
virtual ~CWRACCMeasure() {};
/* name */
virtual const char* get_name() const { return "WRACCMeasure"; };
};
/** @brief class F1Measure
* used to measure F1 score of 2-class classifier.
*
* This class is also capable of measuring
* any other rate using get_[measure name] methods
* of CContingencyTableEvaluation class.
*
* Note that evaluate() should be called first.
*/
class CF1Measure: public CContingencyTableEvaluation
{
public:
/* constructor */
CF1Measure() : CContingencyTableEvaluation(F1) {};
/* virtual destructor */
virtual ~CF1Measure() {};
/* name */
virtual const char* get_name() const { return "F1Measure"; };
};
/** @brief class CrossCorrelationMeasure
* used to measure cross correlation coefficient of 2-class classifier.
*
* This class is also capable of measuring
* any other rate using get_[measure name] methods
* of CContingencyTableEvaluation class.
*
* Note that evaluate() should be called first.
*/
class CCrossCorrelationMeasure: public CContingencyTableEvaluation
{
public:
/* constructor */
CCrossCorrelationMeasure() : CContingencyTableEvaluation(CROSS_CORRELATION) {};
/* virtual destructor */
virtual ~CCrossCorrelationMeasure() {};
/* name */
virtual const char* get_name() const { return "CrossCorrelationMeasure"; };
};
/** @brief class RecallMeasure
* used to measure recall of 2-class classifier.
*
* This class is also capable of measuring
* any other rate using get_[measure name] methods
* of CContingencyTableEvaluation class.
*
* Note that evaluate() should be called first.
*/
class CRecallMeasure: public CContingencyTableEvaluation
{
public:
/* constructor */
CRecallMeasure() : CContingencyTableEvaluation(RECALL) {};
/* virtual destructor */
virtual ~CRecallMeasure() {};
/* name */
virtual const char* get_name() const { return "RecallMeasure"; };
};
/** @brief class PrecisionMeasure
* used to measure precision of 2-class classifier.
*
* This class is also capable of measuring
* any other rate using get_[measure name] methods
* of CContingencyTableEvaluation class.
*
* Note that evaluate() should be called first.
*/
class CPrecisionMeasure: public CContingencyTableEvaluation
{
public:
/* constructor */
CPrecisionMeasure() : CContingencyTableEvaluation(PRECISION) {};
/* virtual destructor */
virtual ~CPrecisionMeasure() {};
/* name */
virtual const char* get_name() const { return "PrecisionMeasure"; };
};
/** @brief class SpecificityMeasure
* used to measure specificity of 2-class classifier.
*
* This class is also capable of measuring
* any other rate using get_[measure name] methods
* of CContingencyTableEvaluation class.
*
* Note that evaluate() should be called first.
*/
class CSpecificityMeasure: public CContingencyTableEvaluation
{
public:
/* constructor */
CSpecificityMeasure() : CContingencyTableEvaluation(SPECIFICITY) {};
/* virtual destructor */
virtual ~CSpecificityMeasure() {};
/* name */
virtual const char* get_name() const { return "SpecificityMeasure"; };
};
}
#endif /* CONTINGENCYTABLEEVALUATION_H_ */
|