This file is indexed.

/usr/include/shogun/evaluation/GradientEvaluation.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Roman Votyakov
 * Copyright (C) 2012 Jacob Walker
 */

#ifndef CGRADIENTEVALUATION_H_
#define CGRADIENTEVALUATION_H_

#include <shogun/evaluation/MachineEvaluation.h>
#include <shogun/evaluation/DifferentiableFunction.h>
#include <shogun/evaluation/EvaluationResult.h>

namespace shogun
{

/** @brief Class evaluates a machine using its associated differentiable
 * function for the function value and its gradient with respect to parameters.
 */
class CGradientEvaluation: public CMachineEvaluation
{
public:
	/** default constructor */
	CGradientEvaluation();

	/** constructor
	 *
	 * @param machine learning machine to use
	 * @param features features to use for cross-validation
	 * @param labels labels that correspond to the features
	 * @param evaluation_criterion evaluation criterion to use
	 * @param autolock whether machine should be auto-locked before evaluation
	 */
	CGradientEvaluation(CMachine* machine, CFeatures* features, CLabels* labels,
			CEvaluation* evaluation_criterion, bool autolock=true);

	virtual ~CGradientEvaluation();

	/** returns the name of the machine evaluation
	 *
	 *  @return name GradientEvaluation
	 */
	virtual const char* get_name() const { return "GradientEvaluation"; }

	/** evaluates differentiable function for value and derivative.
	 *
	 * @return GradientResult containing value and gradient
	 */
	virtual CEvaluationResult* evaluate();

	/** set differentiable function
	*
	* @param diff differentiable function
	*/
	inline void set_function(CDifferentiableFunction* diff)
	{
		SG_REF(diff);
		SG_UNREF(m_diff);
		m_diff=diff;
	}

	/** get differentiable function
	*
	* @return differentiable function
	*/
	inline CDifferentiableFunction* get_function()
	{
		SG_REF(m_diff);
		return m_diff;
	}

private:
	/** initialses and registers parameters */
	void init();

	/** updates parameter dictionary of differentiable function */
	void update_parameter_dictionary();

private:
	/** differentiable function */
	CDifferentiableFunction* m_diff;

	/** parameter dictionary of differentiable function */
	CMap<TParameter*, CSGObject*>*  m_parameter_dictionary;
};
}
#endif /* CGRADIENTEVALUATION_H_ */