/usr/include/shogun/evaluation/MachineEvaluation.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Copyright (C) 2012 Jacob Walker
*
* Some code adapted from CrossValidation class by
* Heiko Strathmann
*/
#ifndef CMACHINEEVALUATION_H_
#define CMACHINEEVALUATION_H_
#include <shogun/base/SGObject.h>
#include <shogun/evaluation/Evaluation.h>
#include <shogun/evaluation/EvaluationResult.h>
#include <shogun/evaluation/MachineEvaluation.h>
namespace shogun
{
class CMachine;
class CFeatures;
class CLabels;
class CSplittingStrategy;
class CEvaluation;
/** @brief Machine Evaluation is an abstract class
* that evaluates a machine according to some criterion.
*
*/
class CMachineEvaluation: public CSGObject
{
public:
CMachineEvaluation();
/** constructor
* @param machine learning machine to use
* @param features features to use for cross-validation
* @param labels labels that correspond to the features
* @param splitting_strategy splitting strategy to use
* @param evaluation_criterion evaluation criterion to use
* @param autolock whether machine should be auto-locked before evaluation
*/
CMachineEvaluation(CMachine* machine, CFeatures* features, CLabels* labels,
CSplittingStrategy* splitting_strategy,
CEvaluation* evaluation_criterion, bool autolock = true);
/** constructor, for use with custom kernels (no features)
* @param machine learning machine to use
* @param labels labels that correspond to the features
* @param splitting_strategy splitting strategy to use
* @param evaluation_criterion evaluation criterion to use
* @param autolock autolock
*/
CMachineEvaluation(CMachine* machine, CLabels* labels,
CSplittingStrategy* splitting_strategy,
CEvaluation* evaluation_criterion, bool autolock = true);
virtual ~CMachineEvaluation();
/** @return in which direction is the best evaluation value? */
EEvaluationDirection get_evaluation_direction();
/** method for evaluation. Performs cross-validation.
* Is repeated m_num_runs. If this number is larger than one, a confidence
* interval is calculated if m_conf_int_alpha is (0<p<1).
* By default m_num_runs=1 and m_conf_int_alpha=0
*
* @return result of evaluation
*/
virtual CEvaluationResult* evaluate() = 0;
/** @return underlying learning machine */
CMachine* get_machine() const;
/** setter for the autolock property. If true, machine will tried to be
* locked before evaluation */
void set_autolock(bool autolock) { m_autolock = autolock; }
protected:
/** Initialize Object */
virtual void init();
protected:
/** Machine to be Evaluated */
CMachine* m_machine;
/** Features to be used*/
CFeatures* m_features;
/** Labels for the features */
CLabels* m_labels;
/** Splitting Strategy to be used */
CSplittingStrategy* m_splitting_strategy;
/** Criterion for evaluation */
CEvaluation* m_evaluation_criterion;
/** whether machine will automatically be locked before evaluation */
bool m_autolock;
/** whether machine should be unlocked after evaluation */
bool m_do_unlock;
};
} /* namespace shogun */
#endif /* CMACHINEEVALUATION_H_ */
|