/usr/include/shogun/features/BinnedDotFeatures.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Copyright (C) 2012 Soeren Sonnenburg
*/
#ifndef _BINNED_DOTFEATURES_H___
#define _BINNED_DOTFEATURES_H___
#include <shogun/lib/common.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/features/DenseFeatures.h>
namespace shogun
{
template <class T> class CDenseFeatures;
/** @brief The class BinnedDotFeatures contains a 0-1 conversion of features into bins.
*
* It is often useful to convert real valued features into 0-1 vectors by
* defining a fixed set of bins and then filling all bins with 0 except the
* bin into which the value falls, i.e.bin=1 iff
* bin lower limit <= value < bin upper limit
*
* This class optionally allows to fill all bins with 1 up to the one with
* value < bin upper limit when the fill flag is set.
*
* In addition one may choose to normalize vectors to have norm one (if the
* norm one flag is set).
*
* Bins take the form of a matrix with as many columns as there are input
* dimensions. Then each row vector contains the limits of the bins.
*
* Note that BinnedDotFeatures never *explicitly* compute the binned feature
* representation but only overload the abstract dot/add methods in
* CDotFeatures making them highly memory and computationally efficient.
*/
class CBinnedDotFeatures : public CDotFeatures
{
public:
/** constructor
*
* @param size cache size
*/
CBinnedDotFeatures(int32_t size=0);
/** copy constructor */
CBinnedDotFeatures(const CBinnedDotFeatures & orig);
/** constructor
*
* @param sf CSimpleFeatureMatrix of type float64_t to convert into
* binned features
* @param bins a matrix with bins to compute binned features from
*/
CBinnedDotFeatures(CDenseFeatures<float64_t>* sf, SGMatrix<float64_t> bins);
virtual ~CBinnedDotFeatures();
/** obtain the dimensionality of the feature space
*
* (not mix this up with the dimensionality of the input space, usually
* obtained via get_num_features())
*
* @return dimensionality
*/
virtual int32_t get_dim_feature_space() const;
/** compute dot product between vector1 and vector2,
* appointed by their indices
*
* @param vec_idx1 index of first vector
* @param df DotFeatures (of same kind) to compute dot product with
* @param vec_idx2 index of second vector
*/
virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df, int32_t vec_idx2);
/** compute dot product between vector1 and a dense vector
*
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
*/
virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2, int32_t vec2_len);
/** add vector 1 multiplied with alpha to dense vector2
*
* @param alpha scalar alpha
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
* @param abs_val if true add the absolute value
*/
virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1, float64_t* vec2, int32_t vec2_len, bool abs_val=false);
/** get number of non-zero features in vector
*
* (in case accurate estimates are too expensive overestimating is OK)
*
* @param num which vector
* @return number of sparse features in vector
*/
virtual int32_t get_nnz_features_for_vector(int32_t num);
/** iterate over the non-zero features
*
* call get_feature_iterator first, followed by get_next_feature and
* free_feature_iterator to cleanup
*
* @param vector_index the index of the vector over whose components to
* iterate over
* @return feature iterator (to be passed to get_next_feature)
*/
virtual void* get_feature_iterator(int32_t vector_index);
/** iterate over the non-zero features
*
* call this function with the iterator returned by get_first_feature
* and call free_feature_iterator to cleanup
*
* @param index is returned by reference (-1 when not available)
* @param value is returned by reference
* @param iterator as returned by get_first_feature
* @return true if a new non-zero feature got returned
*/
virtual bool get_next_feature(int32_t& index, float64_t& value, void* iterator);
/** clean up iterator
* call this function with the iterator returned by get_first_feature
*
* @param iterator as returned by get_first_feature
*/
virtual void free_feature_iterator(void* iterator);
/** get the fill flag
*
* @return fill flag - if true bins are filled up to value v
*/
bool get_fill();
/** set the fill flag
*
* @param fill - if fill is true bins are filled up to value v
*/
void set_fill(bool fill);
/** get norm one flag
*
* @return norm one flag - if true vectors are normalized to have norm one
*/
bool get_norm_one();
/** set norm one flag
*
* @param norm_one if norm_one is true vectors are normalized to have norm one
*/
void set_norm_one(bool norm_one);
/** set features to convert to binned features
*
* @param features - features to convert to binned features
*/
void set_simple_features(CDenseFeatures<float64_t>* features);
/** get features that are convert to binned features
*
* @return features - simple features object
*/
CDenseFeatures<float64_t>* get_simple_features();
/** set bins
*
* bins have a matrix shape with as many column vectors as there are
* dimensions in the corresponding feature object. The column vector
* then contains the limits, e.g. linspace from minimum to maximum
* value of that dimension.
*
* @param bins - bins to convert features into
*/
void set_bins(SGMatrix<float64_t> bins);
/** get current bins
*
* @return bins
*/
SGMatrix<float64_t> get_bins();
/** Returns the name of the Object.
* @return name "BinnedDotFeatures"
*/
virtual const char* get_name() const;
/** duplicate feature object
*
* @return feature object
*/
virtual CFeatures* duplicate() const;
/** get feature type
*
* @return feature type
*/
virtual EFeatureType get_feature_type() const;
/** get feature class
*
* @return feature class
*/
virtual EFeatureClass get_feature_class() const;
/** get number of examples/vectors
*
* @return number of examples/vectors
*/
virtual int32_t get_num_vectors() const;
private:
void init();
/** test if feature matrix matches size of bins with limits
*
* @param vec2_len length of dense vector
*/
void assert_shape(int32_t vec2_len);
protected:
/// underlying features
CDenseFeatures<float64_t>* m_features;
/// bins with limits
SGMatrix<float64_t> m_bins;
/// fill up with 1's or flag just one column
bool m_fill;
/// normalize vectors to have norm one
bool m_norm_one;
};
}
#endif // _BINNED_DOTFEATURES_H___
|