/usr/include/shogun/features/PolyFeatures.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2009 Jonas Behr
* Copyright (C) 2009 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _POLYFEATURES__H__
#define _POLYFEATURES__H__
#include <shogun/lib/common.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/features/DenseFeatures.h>
namespace shogun
{
/** @brief implement DotFeatures for the polynomial kernel
*
* see DotFeatures for further discription
*
*/
class CPolyFeatures : public CDotFeatures
{
public:
/** default constructor */
CPolyFeatures();
/** constructor
*
* @param feat real features
* @param degree degree of the polynomial kernel
* @param normalize normalize kernel
*/
CPolyFeatures(CDenseFeatures<float64_t>* feat, int32_t degree, bool normalize);
virtual ~CPolyFeatures();
/** copy constructor
*
* not implemented!
*
* @param orig original PolyFeature
*/
CPolyFeatures(const CPolyFeatures & orig);
/** get dimensions of feature space
*
* @return dimensions of feature space
*/
virtual int32_t get_dim_feature_space() const;
/** get number of non-zero features in vector
*
* @param num index of vector
* @return number of non-zero features in vector
*/
virtual int32_t get_nnz_features_for_vector(int32_t num);
/** get feature type
*
* @return feature type
*/
virtual EFeatureType get_feature_type() const;
/** get feature class
*
* @return feature class
*/
virtual EFeatureClass get_feature_class() const;
/** get number of vectors
*
* @return number of vectors
*/
virtual int32_t get_num_vectors() const;
/** compute dot product between vector1 and vector2,
* appointed by their indices
*
* @param vec_idx1 index of first vector
* @param df DotFeatures (of same kind) to compute dot product with
* @param vec_idx2 index of second vector
*/
virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df, int32_t vec_idx2);
/** duplicate feature object
*
* @return feature object
*/
CFeatures* duplicate() const;
/**
*
* @return name of class
*/
virtual const char* get_name() const { return "PolyFeatures"; }
/** compute dot product of vector with index arg1
* with an given second vector
*
* @param vec_idx1 index of first vector
* @param vec2 second vector
* @param vec2_len length of second vector
*/
float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2, int32_t vec2_len);
/** compute alpha*x+vec2
*
* @param alpha alpha
* @param vec_idx1 index of first vector x
* @param vec2 vec2
* @param vec2_len length of vec2
* @param abs_val if true add the absolute value
*/
void add_to_dense_vec(float64_t alpha, int32_t vec_idx1, float64_t* vec2, int32_t vec2_len, bool abs_val);
#ifndef DOXYGEN_SHOULD_SKIP_THIS
/** iterator for weighted spectrum features */
struct poly_feature_iterator
{
/** pointer to feature vector */
uint16_t* vec;
/** index of vector */
int32_t vidx;
/** length of vector */
int32_t vlen;
/** if we need to free the vector*/
bool vfree;
/** feature index */
int32_t index;
};
#endif
/** iterate over the non-zero features
*
* call get_feature_iterator first, followed by get_next_feature and
* free_feature_iterator to cleanup
*
* @param vector_index the index of the vector over whose components to
* iterate over
* @return feature iterator (to be passed to get_next_feature)
*/
virtual void* get_feature_iterator(int32_t vector_index);
/** iterate over the non-zero features
*
* call this function with the iterator returned by get_first_feature
* and call free_feature_iterator to cleanup
*
* @param index is returned by reference (-1 when not available)
* @param value is returned by reference
* @param iterator as returned by get_first_feature
* @return true if a new non-zero feature got returned
*/
virtual bool get_next_feature(int32_t& index, float64_t& value,
void* iterator);
/** clean up iterator
* call this function with the iterator returned by get_first_feature
*
* @param iterator as returned by get_first_feature
*/
virtual void free_feature_iterator(void* iterator);
protected:
/** store the norm of each training example */
void store_normalization_values();
/** caller function for the recursive function enumerate_multi_index */
void store_multi_index();
/** recursive function enumerating all multi-indices that sum
* up to the degree of the polynomial kernel */
void enumerate_multi_index(const int32_t feat_idx, uint16_t** index,
uint16_t* exponents, const int32_t degree);
/** function calculating the multinomial coefficients for all
* multi indices */
void store_multinomial_coefficients();
/** simple recursive implementation of binomial coefficient
* which is very efficient if k is small, otherwise it calls
* a more sophisticated implementation */
int32_t bico2(int32_t n, int32_t k);
/** efficient implementation for the binomial coefficient function
* for larger values of k*/
int32_t bico(int32_t n, int32_t k);
/** recursion to calculate the dimensions of the feature space:
* A(N, D)= sum_d=0^D A(N-1, d)
* A(1, D)==1
* A(N, 0)==1
* where N is the dimensionality of the input space
* and D is the degree */
int32_t calc_feature_space_dimensions(int32_t N, int32_t D);
/** calculate the multinomial coefficient */
int32_t multinomialcoef(int32_t* exps, int32_t len);
/** efficient implementation of the ln(gamma(x)) function*/
float64_t gammln(float64_t xx);
/** implementation of the ln(x!) function*/
float64_t factln(int32_t n);
protected:
/** features in original space*/
CDenseFeatures<float64_t>* m_feat;
/** degree of the polynomial kernel */
int32_t m_degree;
/** normalize */
bool m_normalize;
/** dimensions of the input space */
int32_t m_input_dimensions;
/** dimensions of the feature space of the polynomial kernel */
int32_t m_output_dimensions;
/** flattened matrix of all multi indices that
* sum do the degree of the polynomial kernel */
uint16_t* m_multi_index;
/** multinomial coefficients for all multi-indices */
float64_t* m_multinomial_coefficients;
/**store norm of each training example */
float32_t* m_normalization_values;
private:
index_t multi_index_length;
index_t multinomial_coefficients_length;
index_t normalization_values_length;
/** Register all parameters */
void register_parameters();
};
}
#endif // _POLYFEATURES__H__
|