This file is indexed.

/usr/include/shogun/features/RandomKitchenSinksDotFeatures.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Evangelos Anagnostopoulos
 * Copyright (C) 2013 Evangelos Anagnostopoulos
 */

#ifndef _RANDOMKITCHENSINKS_DOT_FEATURES_H__
#define _RANDOMKITCHENSINKS_DOT_FEATURES_H__

#include <shogun/features/DotFeatures.h>

namespace shogun
{

/** @brief class that implements the Random Kitchen Sinks for the DotFeatures
 * as mentioned in http://books.nips.cc/papers/files/nips21/NIPS2008_0885.pdf.
 *
 * The Random Kitchen Sinks algorithm expects:
 *		a dataset to work on
 *		a function phi such that |phi(x; a)| <= 1, the a's are the function parameters
 *		a probability distrubution p, from which to draw the a's
 *		the number of samples K to draw from p.
 *
 * Then:
 *		it draws K a's from p
 *		it computes for each vector in the dataset
 *			Zi = [phi(Xi;a0), ..., phi(Xi;aK)]
 *		and then solves the empirical risk minimization problem for all Zi, either
 *			through least squares or through a linear SVM.
 *
 * This class implements the vector transformation on-the-fly whenever it is needed.
 * In order for it to work, the class expects the user to implement a subclass of
 * CRKSFunctions and implement in there the functions phi and p and then pass an
 * instantiated object of that class to the constructor.
 *
 * Further useful resources, include :
 *	http://www.shloosl.com/~ali/random-features/
 *	https://research.microsoft.com/apps/video/dl.aspx?id=103390&l=i
 */
class CRandomKitchenSinksDotFeatures : public CDotFeatures
{
public:

	/** default constructor */
	CRandomKitchenSinksDotFeatures();

	/** constructor
	 * Subclasses should call generate_random_coefficients() on their
	 * own if they choose to use this constructor.
	 *
	 * @param dataset the dataset to work on
	 * @param K the number of samples to draw
	 */
	CRandomKitchenSinksDotFeatures(CDotFeatures* dataset, int32_t K);

	/** constructor
	 *
	 * @param dataset the dataset to work on
	 * @param K the number of samples to draw
	 * @param coeff the random coefficients to use
	 */
	CRandomKitchenSinksDotFeatures(CDotFeatures* dataset, int32_t K,
			SGMatrix<float64_t> coeff);

	/** constructor loading features from file
	 *
	 * @param loader File object via which to load data
	 */
	CRandomKitchenSinksDotFeatures(CFile* loader);

	/** copy constructor */
	CRandomKitchenSinksDotFeatures(const CRandomKitchenSinksDotFeatures& orig);

	/** duplicate */
	virtual CFeatures* duplicate() const;

	/** destructor */
	virtual ~CRandomKitchenSinksDotFeatures();

	/** obtain the dimensionality of the feature space
	 *
	 * (not mix this up with the dimensionality of the input space, usually
	 * obtained via get_num_features())
	 *
	 * @return dimensionality
	 */
	virtual int32_t get_dim_feature_space() const;

	/** compute dot product between vector1 and vector2,
	 * appointed by their indices
	 *
	 * possible with subset
	 *
	 * @param vec_idx1 index of first vector
	 * @param df DotFeatures (of same kind) to compute dot product with
	 * @param vec_idx2 index of second vector
	 */
	virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df,
			int32_t vec_idx2);

	/** compute dot product between vector1 and a dense vector
	 *
	 * possible with subset
	 *
	 * @param vec_idx1 index of first vector
	 * @param vec2 pointer to real valued vector
	 * @param vec2_len length of real valued vector
	 */
	virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2,
			int32_t vec2_len);

	/** add vector 1 multiplied with alpha to dense vector2
	 *
	 * possible with subset
	 *
	 * @param alpha scalar alpha
	 * @param vec_idx1 index of first vector
	 * @param vec2 pointer to real valued vector
	 * @param vec2_len length of real valued vector
	 * @param abs_val if true add the absolute value
	 */
	virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1,
			float64_t* vec2, int32_t vec2_len, bool abs_val = false);

	/** get number of non-zero features in vector
	 *
	 * @param num which vector
	 * @return number of non-zero features in vector
	 */
	virtual int32_t get_nnz_features_for_vector(int32_t num);

	/** iterate over the non-zero features
	 *
	 * call get_feature_iterator first, followed by get_next_feature and
	 * free_feature_iterator to cleanup
	 *
	 * possible with subset
	 *
	 * @param vector_index the index of the vector over whose components to
	 *			iterate over
	 * @return feature iterator (to be passed to get_next_feature)
	 */
	virtual void* get_feature_iterator(int32_t vector_index);

	/** iterate over the non-zero features
	 *
	 * call this function with the iterator returned by get_first_feature
	 * and call free_feature_iterator to cleanup
	 *
	 * possible with subset
	 *
	 * @param index is returned by reference (-1 when not available)
	 * @param value is returned by reference
	 * @param iterator as returned by get_first_feature
	 * @return true if a new non-zero feature got returned
	 */
	virtual bool get_next_feature(int32_t& index, float64_t& value,
			void* iterator);

	/** clean up iterator
	 * call this function with the iterator returned by get_first_feature
	 *
	 * @param iterator as returned by get_first_feature
	 */
	virtual void free_feature_iterator(void* iterator);

	/** get feature type
	 *
	 * @return templated feature type
	 */
	virtual EFeatureType get_feature_type() const;

	/** get feature class
	 *
	 * @return feature class DENSE
	 */
	virtual EFeatureClass get_feature_class() const;

	/** get number of feature vectors
	 *
	 * @return number of feature vectors
	 */
	virtual int32_t get_num_vectors() const;

	/** generate the random coefficients and return them in a
	 * matrix where each column is a parameter vector
	 *
	 * @return the parameter vectors in a matrix
	 */
	SGMatrix<float64_t> generate_random_coefficients();

	/** returns the random function parameters that were generated through the function p
	 *
	 * @return the generated random coefficients
	 */
	SGMatrix<float64_t> get_random_coefficients();

	/** @return object name */
	const char* get_name() const;

protected:
	/** Method used before computing the dot product between
	 * a feature vector and a parameter vector
	 *
	 * @param vec_idx the feature vector index
	 * @param par_idx the parameter vector index
	 */
	virtual float64_t dot(index_t vec_idx, index_t par_idx);

	/** subclass must override this to perform any operations
	 * on the dot result between a feature vector and a parameter vector w
	 *
	 * @param dot_result the result of the dot operation
	 * @param par_idx the idx of the parameter vector
	 * @return the (optionally) modified result
	 */
	virtual float64_t post_dot(float64_t dot_result, index_t par_idx);

	/** Generates a random parameter vector, subclasses must override this
	 *
	 * @return a random parameter vector
	 */
	virtual SGVector<float64_t> generate_random_parameter_vector()=0;
private:
	void init(CDotFeatures* dataset, int32_t K);

protected:

	/** the dataset to work on */
	CDotFeatures* feats;

	/** the number of samples to use */
	int32_t num_samples;

	/** random coefficients of the function phi, drawn from p */
	SGMatrix<float64_t> random_coeff;
};
}

#endif // _RANDOMKITCHENSINKS_DOT_FEATURES_H__