This file is indexed.

/usr/include/shogun/kernel/GaussianKernel.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2010 Soeren Sonnenburg
 * Written (W) 2011 Abhinav Maurya
 * Written (W) 2012 Heiko Strathmann
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 * Copyright (C) 2010 Berlin Institute of Technology
 */

#ifndef _GAUSSIANKERNEL_H___
#define _GAUSSIANKERNEL_H___

#include <shogun/lib/common.h>
#include <shogun/kernel/Kernel.h>
#include <shogun/kernel/DotKernel.h>
#include <shogun/features/DotFeatures.h>

namespace shogun
{
	class CDotFeatures;
/** @brief The well known Gaussian kernel (swiss army knife for SVMs) computed
 * on CDotFeatures.
 *
 * It is computed as
 *
 * \f[
 * k({\bf x},{\bf x'})= exp(-\frac{||{\bf x}-{\bf x'}||^2}{\tau})
 * \f]
 *
 * where \f$\tau\f$ is the kernel width.
 *
 * The compact version as given in Bart Hamers' thesis <i>Kernel Models for
 * Large Scale Applications</i> (Eq. 4.10) is computed as
 *
 * \f[
 * k({\bf x},{\bf x'})= max(0, (1-\frac{||{\bf x}-{\bf x'}||}{3\tau})^v)) *
 * exp(-\frac{||{\bf x}-{\bf x'}||^2}{\tau})
 * \f]
 *
 * where \f$\tau\f$ is the kernel width.
 */
class CGaussianKernel: public CDotKernel
{
	public:
		/** default constructor */
		CGaussianKernel();

		/** constructor
		 *
		 * @param size cache size
		 * @param width width
		 */
		CGaussianKernel(int32_t size, float64_t width);

		/** constructor
		 *
		 * @param l features of left-hand side
		 * @param r features of right-hand side
		 * @param width width
		 * @param size cache size
		 */
		CGaussianKernel(CDotFeatures* l, CDotFeatures* r,
			float64_t width, int32_t size=10);

		virtual ~CGaussianKernel();

		/** @param kernel is casted to CGaussianKernel, error if not possible
		 * is SG_REF'ed
		 * @return casted CGaussianKernel object
		 */
		static CGaussianKernel* obtain_from_generic(CKernel* kernel);

		/** Make a shallow copy of the kernel */
		virtual CSGObject* shallow_copy() const;

		/** initialize kernel
		 *
		 * @param l features of left-hand side
		 * @param r features of right-hand side
		 * @return if initializing was successful
		 */
		virtual bool init(CFeatures* l, CFeatures* r);

		/** clean up kernel */
		virtual void cleanup();

		/** return what type of kernel we are
		 *
		 * @return kernel type GAUSSIAN
		 */
		virtual EKernelType get_kernel_type() { return K_GAUSSIAN; }

		/** return the kernel's name
		 *
		 * @return name Gaussian
		 */
		virtual const char* get_name() const { return "GaussianKernel"; }

		/** set the kernel's width
		 *
		 * @param w kernel width
		 */
		virtual void set_width(float64_t w)	{ width=w; }

		/** return the kernel's width
		 *
		 * @return kernel width
		 */
		virtual float64_t get_width() const	{ return width;	}

		/** set the compact option
		 *
		 * @param compact value of the compact option
		 */
		inline void set_compact_enabled(bool compact) {	m_compact=compact; }

		/** return value of the compact option
		 *
		 * @return whether the compact option is enabled
		 */
		inline bool get_compact_enabled() { return m_compact; }

		/** return derivative with respect to specified parameter
		 *
		 * @param param the parameter
		 * @param index the index of the element if parameter is a vector
		 *
		 * @return gradient with respect to parameter
		 */
		virtual SGMatrix<float64_t> get_parameter_gradient(
				const TParameter* param, index_t index=-1);

	protected:
		/** compute kernel function for features a and b
		 * idx_{a,b} denote the index of the feature vectors
		 * in the corresponding feature object
		 *
		 * @param idx_a index a
		 * @param idx_b index b
		 * @return computed kernel function at indices a,b
		 */
		virtual float64_t compute(int32_t idx_a, int32_t idx_b);

		/** Can (optionally) be overridden to post-initialize some member
		 * variables which are not PARAMETER::ADD'ed. Make sure that at first
		 * the overridden method BASE_CLASS::LOAD_SERIALIZABLE_POST is called.
		 *
		 *  @exception ShogunException Will be thrown if an error occurres.
		 */
		virtual void load_serializable_post() throw (ShogunException);

	private:
		/** helper function to compute quadratic terms in
		 * (a-b)^2 (== a^2+b^2-2ab)
		 */
		void precompute_squared();

		/** helper function to compute quadratic terms in
		 * (a-b)^2 (== a^2+b^2-2ab)
		 *
		 * @param buf buffer to store squared terms (will be allocated)
		 * @param df dot feature object based on which k(i,i) is computed
		 * */
		void precompute_squared_helper(float64_t* &buf, CDotFeatures* df);

		void init();

	protected:
		/** width */
		float64_t width;
		/** squared left-hand side */
		float64_t* sq_lhs;
		/** squared right-hand side */
		float64_t* sq_rhs;
		/** whether compact output enabled */
		bool m_compact;
};
}
#endif /* _GAUSSIANKERNEL_H__ */