/usr/include/shogun/lib/SGMatrix.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2011-2013 Heiko Strathmann
* Written (W) 2012 Fernando Jose Iglesias Garcia
* Written (W) 2010,2012 Soeren Sonnenburg
* Copyright (C) 2010 Berlin Institute of Technology
* Copyright (C) 2012 Soeren Sonnenburg
*/
#ifndef __SGMATRIX_H__
#define __SGMATRIX_H__
#include <shogun/lib/config.h>
#include <shogun/lib/common.h>
#include <shogun/lib/DataType.h>
#include <shogun/lib/SGReferencedData.h>
namespace shogun
{
template<class T> class SGVector;
class CFile;
/** @brief shogun matrix */
template<class T> class SGMatrix : public SGReferencedData
{
public:
/** default constructor */
SGMatrix();
/** constructor for setting reference counting while not creating
* the matrix in memory (use this for static SGMatrix instances) */
SGMatrix(bool ref_counting);
/** constructor for setting params */
SGMatrix(T* m, index_t nrows, index_t ncols, bool ref_counting=true);
/** constructor to create new matrix in memory */
SGMatrix(index_t nrows, index_t ncols, bool ref_counting=true);
/** copy constructor */
SGMatrix(const SGMatrix &orig);
/** empty destructor */
virtual ~SGMatrix();
/** get a column vector
* @param col column index
*/
T* get_column_vector(index_t col) const
{
const int64_t c = col;
return &matrix[c*num_rows];
}
/** get a row vector
*
* @param row row index
* @return row vector
*/
SGVector<T> get_row_vector(index_t row) const;
/** get a main diagonal vector. Matrix is not required to be square.
*
* @return main diagonal vector
*/
SGVector<T> get_diagonal_vector() const;
/** operator overload for matrix read only access
* @param i_row
* @param i_col
*/
inline const T& operator()(index_t i_row, index_t i_col) const
{
const int64_t c = i_col;
return matrix[c*num_rows + i_row];
}
/** operator overload for matrix read only access
* @param index to access
*/
inline const T& operator[](index_t index) const
{
return matrix[index];
}
/** operator overload for matrix r/w access
* @param i_row
* @param i_col
*/
inline T& operator()(index_t i_row, index_t i_col)
{
const int64_t c = i_col;
return matrix[c*num_rows + i_row];
}
/** operator overload for matrix r/w access
* @param index to access
*/
inline T& operator[](index_t index)
{
return matrix[index];
}
/**
* get the matrix (no copying is done here)
*
* @return the refcount increased matrix
*/
inline SGMatrix<T> get()
{
return *this;
}
/** check for pointer identity */
bool operator==(SGMatrix<T>& other);
/** operator overload for element-wise matrix comparison.
* Note that only numerical data is compared
*
* @param other matrix to compare with
* @return true iff all elements are equal
*/
bool equals(SGMatrix<T>& other);
/** set matrix to a constant */
void set_const(T const_elem);
/** fill matrix with zeros */
void zero();
/** returns the maximum single element of the matrix */
T max_single();
/** clone matrix */
SGMatrix<T> clone();
/** clone matrix */
static T* clone_matrix(const T* matrix, int32_t nrows, int32_t ncols);
/** transpose matrix */
static void transpose_matrix(
T*& matrix, int32_t& num_feat, int32_t& num_vec);
/** create diagonal matrix */
static void create_diagonal_matrix(T* matrix, T* v,int32_t size);
/** returns the identity matrix, scaled by a factor
*
* @param size size of square identity matrix
* @param scale (optional) scaling factor
*/
static SGMatrix<T> create_identity_matrix(index_t size, T scale);
/** returns the centering matrix, given by H=I-1/n*O, where
* I is the identity matrix, O is a square matrix of ones of size n
* Multiplied from the left hand side, subtracts from each column
* its mean.
* Multiplied from the right hand side, subtracts from each row
* its mean (so from each dimension of a SHOGUN feature)
*
* Note that H*H=H=H^T
*
* @param size size of centering matrix
*/
static SGMatrix<float64_t> create_centering_matrix(index_t size);
#ifdef HAVE_LAPACK
/** compute eigenvalues and eigenvectors of symmetric matrix using
* LAPACK
*
* @param matrix symmetric matrix to compute eigenproblem. Is
* overwritten and contains orthonormal eigenvectors afterwards
* @return eigenvalues vector with eigenvalues equal to number of rows
* in matrix
* */
static SGVector<float64_t> compute_eigenvectors(
SGMatrix<float64_t> matrix);
/** compute eigenvalues and eigenvectors of symmetric matrix
*
* @param matrix overwritten and contains n orthonormal eigenvectors
* @param n
* @param m
* @return eigenvalues (array of length n, to be deleted[])
* */
static double* compute_eigenvectors(double* matrix, int n, int m);
/** compute few eigenpairs of a symmetric matrix using LAPACK DSYEVR method
* (Relatively Robust Representations).
* Has at least O(n^3/3) complexity
* @param matrix_ symmetric matrix
* @param eigenvalues contains iu-il+1 eigenvalues in ascending order (to be free'd)
* @param eigenvectors contains iu-il+1 orthonormal eigenvectors of given matrix column-wise (to be free'd)
* @param n dimension of matrix
* @param il low index of requested eigenpairs (1<=il<=n)
* @param iu high index of requested eigenpairs (1<=il<=iu<=n)
*/
void compute_few_eigenvectors(double* matrix_, double*& eigenvalues, double*& eigenvectors,
int n, int il, int iu);
#endif
/** Computes scale* A*B, where A and B may be transposed.
* Asserts for matching inner dimensions.
* @param A matrix A
* @param transpose_A optional whether A should be transposed before
* @param B matrix B
* @param transpose_B optional whether B should be transposed before
* @param scale optional scaling factor for result
*/
static SGMatrix<float64_t> matrix_multiply(
SGMatrix<float64_t> A, SGMatrix<float64_t> B,
bool transpose_A=false, bool transpose_B=false,
float64_t scale=1.0);
#ifdef HAVE_LAPACK
/** inverses square matrix in-place */
static void inverse(SGMatrix<float64_t> matrix);
/** return the pseudo inverse for matrix
* when matrix has shape (rows, cols) the pseudo inverse has (cols, rows)
*/
static float64_t* pinv(
float64_t* matrix, int32_t rows, int32_t cols,
float64_t* target=NULL);
#endif
/** compute trace */
static float64_t trace(
float64_t* mat, int32_t cols, int32_t rows);
/** sums up all rows of a matrix and returns the resulting rowvector */
static T* get_row_sum(T* matrix, int32_t m, int32_t n);
/** sums up all columns of a matrix and returns the resulting columnvector */
static T* get_column_sum(T* matrix, int32_t m, int32_t n);
/** Centers the matrix, i.e. removes column/row mean from columns/rows */
void center();
/** Centers matrix (e.g. kernel matrix in feature space INPLACE */
static void center_matrix(T* matrix, int32_t m, int32_t n);
/** remove column mean */
void remove_column_mean();
/** display matrix */
void display_matrix(const char* name="matrix") const;
/** display matrix (useful for debugging) */
static void display_matrix(
const T* matrix, int32_t rows, int32_t cols,
const char* name="matrix", const char* prefix="");
/** display matrix */
static void display_matrix(
const SGMatrix<T> matrix, const char* name="matrix",
const char* prefix="");
/** Simple helper method that returns a matrix with allocated memory
* for a given size. A pre_allocated one can optionally be specified
* in order to use that.
* Basically just for having dimension check encapsulated.
*
* @param num_rows rows of returned matrix
* @param num_cols columns of returned matrix
* @param pre_allocated optional matrix that is returned instead of new
* matrix. Make sure dimensions match
* @return matrix with allocated memory of specified size
*/
static SGMatrix<T> get_allocated_matrix(index_t num_rows,
index_t num_cols, SGMatrix<T> pre_allocated=SGMatrix<T>());
/** load matrix from file
*
* @param loader File object via which to load data
*/
void load(CFile* loader);
/** save matrix to file
*
* @param saver File object via which to save data
*/
void save(CFile* saver);
protected:
/** overridden to copy data */
virtual void copy_data(const SGReferencedData &orig);
/** overridden to initialize empty data */
virtual void init_data();
/** overridden to free data */
virtual void free_data();
public:
/** matrix */
T* matrix;
/** number of rows of matrix */
index_t num_rows;
/** number of columns of matrix */
index_t num_cols;
};
}
#endif // __SGMATRIX_H__
|