/usr/include/shogun/mathematics/Statistics.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2011-2012 Heiko Strathmann
* Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
*
* ALGLIB Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier under GPL2+
* http://www.alglib.net/
* See method comments which functions are taken from ALGLIB (with adjustments
* for shogun)
*/
#ifndef __STATISTICS_H_
#define __STATISTICS_H_
#include <math.h>
#include <shogun/lib/config.h>
#include <shogun/base/SGObject.h>
namespace shogun
{
template<class T> class SGMatrix;
template<class T> class SGSparseMatrix;
/** @brief Class that contains certain functions related to statistics, such as
* probability/cumulative distribution functions, different statistics, etc.
*/
class CStatistics: public CSGObject
{
public:
/** Calculates mean of given values. Given \f$\{x_1, ..., x_m\}\f$, this
* is \f$\frac{1}{m}\sum_{i=1}^m x_i\f$
*
* @param values vector of values
* @return mean of given values
*/
static float64_t mean(SGVector<float64_t> values);
/** Calculates median of given values. The median is the value that one
* gets when the input vector is sorted and then selects the middle value.
*
* QuickSelect method copyright:
* This Quickselect routine is based on the algorithm described in
* "Numerical recipes in C", Second Edition,
* Cambridge University Press, 1992, Section 8.5, ISBN 0-521-43108-5
* This code by Nicolas Devillard - 1998. Public domain.
*
* Torben method copyright:
* The following code is public domain.
* Algorithm by Torben Mogensen, implementation by N. Devillard.
* Public domain.
*
* Both methods adapted to SHOGUN by Heiko Strathmann.
*
* @param values vector of values
* @param modify if false, array is modified while median is computed
* (Using QuickSelect).
* If true, median is computed without modifications, which is slower.
* There are two methods to choose from.
* @param in_place if set false, the vector is copied and then computed
* using QuickSelect. If set true, median is computed in-place using
* Torben method.
* @return median of given values
*/
static float64_t median(SGVector<float64_t> values, bool modify=false,
bool in_place=false);
/** Calculates median of given values. Matrix is seen as a long vector for
* this. The median is the value that one
* gets when the input vector is sorted and then selects the middle value.
*
* This method is just a wrapper for median(). See this method for license
* of QuickSelect and Torben.
*
* @param values vector of values
* @param modify if false, array is modified while median is computed
* (Using QuickSelect).
* If true, median is computed without modifications, which is slower.
* There are two methods to choose from.
* @param in_place if set false, the vector is copied and then computed
* using QuickSelect. If set true, median is computed in-place using
* Torben method.
* @return median of given values
*/
static float64_t matrix_median(SGMatrix<float64_t> values,
bool modify=false, bool in_place=false);
/** Calculates unbiased empirical variance estimator of given values. Given
* \f$\{x_1, ..., x_m\}\f$, this is
* \f$\frac{1}{m-1}\sum_{i=1}^m (x-\bar{x})^2\f$ where
* \f$\bar x=\frac{1}{m}\sum_{i=1}^m x_i\f$
*
* @param values vector of values
* @return variance of given values
*/
static float64_t variance(SGVector<float64_t> values);
/** Calculates unbiased empirical standard deviation estimator of given
* values. Given \f$\{x_1, ..., x_m\}\f$, this is
* \f$\sqrt{\frac{1}{m-1}\sum_{i=1}^m (x-\bar{x})^2}\f$ where
* \f$\bar x=\frac{1}{m}\sum_{i=1}^m x_i\f$
*
* @param values vector of values
* @return variance of given values
*/
static float64_t std_deviation(SGVector<float64_t> values);
/** Calculates mean of given values. Given \f$\{x_1, ..., x_m\}\f$, this
* is \f$\frac{1}{m}\sum_{i=1}^m x_i\f$
*
* Computes the mean for each row/col of matrix
*
* @param values vector of values
* @param col_wise if true, every column vector will be used, row vectors
* otherwise
* @return mean of given values
*/
static SGVector<float64_t> matrix_mean(SGMatrix<float64_t> values,
bool col_wise=true);
/** Calculates unbiased empirical variance estimator of given values. Given
* \f$\{x_1, ..., x_m\}\f$, this is
* \f$\frac{1}{m-1}\sum_{i=1}^m (x-\bar{x})^2\f$ where
* \f$\bar x=\frac{1}{m}\sum_{i=1}^m x_i\f$
*
* Computes the variance for each row/col of matrix
*
* @param values vector of values
* @param col_wise if true, every column vector will be used, row vectors
* otherwise
* @return variance of given values
*/
static SGVector<float64_t> matrix_variance(SGMatrix<float64_t> values,
bool col_wise=true);
/** Calculates unbiased empirical standard deviation estimator of given
* values. Given \f$\{x_1, ..., x_m\}\f$, this is
* \f$\sqrt{\frac{1}{m-1}\sum_{i=1}^m (x-\bar{x})^2}\f$ where
* \f$\bar x=\frac{1}{m}\sum_{i=1}^m x_i\f$
*
* Computes the variance for each row/col of matrix
*
* @param values vector of values
* @param col_wise if true, every column vector will be used, row vectors
* otherwise
* @return variance of given values
*/
static SGVector<float64_t> matrix_std_deviation(
SGMatrix<float64_t> values, bool col_wise=true);
#ifdef HAVE_LAPACK
/** Computes the empirical estimate of the covariance matrix of the given
* data which is organized as num_cols variables with num_rows observations.
*
* Data is centered before matrix is computed. May be done in place.
* In this case, the observation matrix is changed (centered).
*
* Given sample matrix \f$X\f$, first, column mean is removed to create
* \f$\bar X\f$. Then \f$\text{cov}(X)=(X-\bar X)^T(X - \bar X)\f$ is
* returned.
*
* Needs SHOGUN to be compiled with LAPACK.
*
* @param observations data matrix organized as one variable per column
* @param in_place optional, if set to true, observations matrix will be
* centered, if false, a copy will be created an centered.
* @return covariance matrix empirical estimate
*/
static SGMatrix<float64_t> covariance_matrix(
SGMatrix<float64_t> observations, bool in_place=false);
#endif //HAVE_LAPACK
/** Calculates the sample mean of a given set of samples and also computes
* the confidence interval for the actual mean for a given p-value,
* assuming that the actual variance and mean are unknown (These are
* estimated by the samples). Based on Student's t-distribution.
*
* Only for normally distributed data
*
* @param values vector of values that are used for calculations
* @param alpha actual mean lies in confidence interval with (1-alpha)*100%
* @param conf_int_low lower confidence interval border is written here
* @param conf_int_up upper confidence interval border is written here
* @return sample mean
*
*/
static float64_t confidence_intervals_mean(SGVector<float64_t> values,
float64_t alpha, float64_t& conf_int_low, float64_t& conf_int_up);
/** Functional inverse of Student's t distribution
*
* Given probability \f$p\f$, finds the argument \f$t\f$ such that
* \f$\text{student\_t}(k,t)=p\f$
*
* Taken from ALGLIB under gpl2+
*/
static float64_t inverse_student_t(int32_t k, float64_t p);
/** Inverse of incomplete beta integral
*
* Given \f$y\f$, the function finds \f$x\f$ such that
*
* \f$\text{inverse\_incomplete\_beta}( a, b, x ) = y .\f$
*
* The routine performs interval halving or Newton iterations to find the
* root of \f$\text{inverse\_incomplete\_beta}( a, b, x )-y=0.\f$
*
* Taken from ALGLIB under gpl2+
*/
static float64_t inverse_incomplete_beta(float64_t a, float64_t b,
float64_t y);
/** Incomplete beta integral
*
* Returns incomplete beta integral of the arguments, evaluated
* from zero to \f$x\f$. The function is defined as
* \f[
* \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\int_0^x t^{a-1} (1-t)^{b-1} dt.
* \f]
*
* The domain of definition is \f$0 \leq x \leq 1\f$. In this
* implementation \f$a\f$ and \f$b\f$ are restricted to positive values.
* The integral from \f$x\f$ to \f$1\f$ may be obtained by the symmetry
* relation
*
* \f[
* 1-\text{incomplete\_beta}(a,b,x)=\text{incomplete\_beta}(b,a,1-x).
* \f]
*
* The integral is evaluated by a continued fraction expansion
* or, when \f$b\cdot x\f$ is small, by a power series.
*
* Taken from ALGLIB under gpl2+
*/
static float64_t incomplete_beta(float64_t a, float64_t b, float64_t x);
/** Inverse of Normal distribution function
*
* Returns the argument, \f$x\f$, for which the area under the
* Gaussian probability density function (integrated from
* minus infinity to \f$x\f$) is equal to \f$y\f$.
*
*
* For small arguments \f$0 < y < \exp(-2)\f$, the program computes
* \f$z = \sqrt{ -2.0 \log(y) }\f$; then the approximation is
* \f$x = z - \frac{log(z)}{z} - \frac{1}{z} \frac{P(\frac{1}{z})}{ Q(\frac{1}{z}}\f$.
* There are two rational functions \f$\frac{P}{Q}\f$, one for \f$0 < y < \exp(-32)\f$
* and the other for \f$y\f$ up to \f$\exp(-2)\f$. For larger arguments,
* \f$w = y - 0.5\f$, and \f$\frac{x}{\sqrt{2\pi}} = w + w^3 R(\frac{w^2)}{S(w^2)})\f$.
*
* Taken from ALGLIB under gpl2+
*/
static float64_t inverse_normal_cdf(float64_t y0);
/** same as other version, but with custom mean and variance */
static float64_t inverse_normal_cdf(float64_t y0, float64_t mean,
float64_t std_dev);
/** @return natural logarithm of the gamma function of input */
static inline float64_t lgamma(float64_t x)
{
return ::lgamma((double) x);
}
/** @return natural logarithm of the gamma function of input for large
* numbers */
static inline floatmax_t lgammal(floatmax_t x)
{
#ifdef HAVE_LGAMMAL
return ::lgammal((long double) x);
#else
return ::lgamma((double) x);
#endif // HAVE_LGAMMAL
}
/** @return gamma function of input */
static inline float64_t tgamma(float64_t x)
{
return ::tgamma((double) x);
}
/** Incomplete gamma integral
*
* Given \f$p\f$, the function finds \f$x\f$ such that
*
* \f[
* \text{incomplete\_gamma}(a,x)=\frac{1}{\Gamma(a)}}\int_0^x e^{-t} t^{a-1} dt.
* \f]
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of \f$a\f$ and \f$x\f$.
*
* Taken from ALGLIB under gpl2+
*/
static float64_t incomplete_gamma(float64_t a, float64_t x);
/** Complemented incomplete gamma integral
*
* The function is defined by
*
* \f[
* \text{incomplete\_gamma\_completed}(a,x)=1-\text{incomplete\_gamma}(a,x) =
* \frac{1}{\Gamma (a)}\int_x^\infty e^{-t} t^{a-1} dt
* \f]
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of \f$a\f$ and \f$x\f$.
*
* Taken from ALGLIB under gpl2+
*/
static float64_t incomplete_gamma_completed(float64_t a, float64_t x);
/** Evaluates the CDF of the gamma distribution with given parameters \f$a, b\f$
* at \f$x\f$. Based on Wikipedia definition and ALGLIB routines.
*
* @param x position to evaluate
* @param a shape parameter
* @param b scale parameter
* @return gamma CDF at \f$x\f$
*/
static float64_t gamma_cdf(float64_t x, float64_t a, float64_t b);
/** Evaluates the inverse CDF of the gamma distribution with given
* parameters \f$a\f$, \f$b\f$ at \f$x\f$, such that result equals
* \f$\text{gamma\_cdf}(x,a,b)\f$.
*
* @param p position to evaluate
* @param a shape parameter
* @param b scale parameter
* @return \f$x\f$ such that result equals \f$\text{gamma\_cdf}(x,a,b)\f$.
*/
static float64_t inverse_gamma_cdf(float64_t p, float64_t a, float64_t b);
/** Inverse of complemented incomplete gamma integral
*
* Given \f$p\f$, the function finds \f$x\f$ such that
*
* \f$\text{inverse\_incomplete\_gamma\_completed}( a, x ) = p.\f$
*
* Starting with the approximate value \f$ x=a t^3\f$, where
* \f$ t = 1 - d - \text{ndtri}(p) \sqrt{d} \f$ and \f$ d = \frac{1}{9}a \f$
*
* The routine performs up to 10 Newton iterations to find the
* root of \f$ \text{inverse\_incomplete\_gamma\_completed}( a, x )-p=0\f$
*
* Taken from ALGLIB under gpl2+
*/
static float64_t inverse_incomplete_gamma_completed(float64_t a,
float64_t y0);
/** Normal distribution function
*
* Returns the area under the Gaussian probability density
* function, integrated from minus infinity to \f$x\f$:
*
* \f[
* \text{normal\_cdf}(x)=\frac{1}{\sqrt{2\pi}} \int_{-\infty}^x
* \exp \left( -\frac{t^2}{2} \right) dt = \frac{1+\text{error\_function}(z) }{2}
* \f]
*
* where \f$ z = \frac{x}{\sqrt{2} \sigma}\f$ and \f$ \sigma \f$ is the standard
* deviation. Computation is via the functions \f$\text{error\_function}\f$
* and \f$\text{error\_function\_completement}\f$.
*
* Taken from ALGLIB under gpl2+
* Custom variance added by Heiko Strathmann
*/
static float64_t normal_cdf(float64_t x, float64_t std_dev=1);
/** returns logarithm of the cumulative distribution function
* (CDF) of Gaussian distribution \f$N(0, 1)\f$:
*
* \f[
* \text{lnormal\_cdf}(x)=log\left(\frac{1}{2}+
* \frac{1}{2}\text{error\_function}(\frac{x}{\sqrt{2}})\right)
* \f]
*
* This method uses asymptotic expansion for \f$x<-10.0\f$,
* otherwise it returns \f$log(\text{normal\_cdf}(x))\f$.
*
* @param x real value
*
* @return \f$log(\text{normal\_cdf}(x))\f$
*/
static float64_t lnormal_cdf(float64_t x);
/** Error function
*
* The integral is
*
* \f[
* \text{error\_function}(x)=
* \frac{2}{\sqrt{pi}}\int_0^x \exp (-t^2) dt
* \f]
*
* For \f$0 \leq |x| < 1, \text{error\_function}(x) = x \frac{P4(x^2)}{Q5(x^2)}\f$
* otherwise
* \f$\text{error\_function}(x) = 1 - \text{error\_function\_complement}(x)\f$.
*
* Taken from ALGLIB under gpl2+
*/
static float64_t error_function(float64_t x);
/** Complementary error function
*
* \f[
* 1 - \text{error\_function}(x) =
* \text{error\_function\_complement}(x)=
* \frac{2}{\sqrt{\pi}}\int_x^\infty \exp\left(-t^2 \right)dt
* \f]
*
* For small \f$x\f$, \f$\text{error\_function\_complement}(x) =
* 1 - \text{error\_function}(x)\f$; otherwise rational
* approximations are computed.
*
* Taken from ALGLIB under gpl2+
*/
static float64_t error_function_complement(float64_t x);
/** @return mutual information of \f$p\f$ which is given in logspace
* where \f$p,q\f$ are given in logspace */
static float64_t mutual_info(float64_t* p1, float64_t* p2, int32_t len);
/** @return relative entropy \f$H(P||Q)\f$
* where \f$p,q\f$ are given in logspace */
static float64_t relative_entropy(
float64_t* p, float64_t* q, int32_t len);
/** @return entropy of \f$p\f$ which is given in logspace */
static float64_t entropy(float64_t* p, int32_t len);
/** fisher's test for multiple 2x3 tables
* @param tables
*/
static SGVector<float64_t> fishers_exact_test_for_multiple_2x3_tables(SGMatrix<float64_t> tables);
/** fisher's test for 2x3 table
* @param table
*/
static float64_t fishers_exact_test_for_2x3_table(SGMatrix<float64_t> table);
/** sample indices
* @param sample_size size of sample to pick
* @param N total number of indices
*/
static SGVector<int32_t> sample_indices(int32_t sample_size, int32_t N);
/** @return object name */
virtual const char* get_name() const
{
return "Statistics";
}
/** Derivative of the log gamma function.
*
* @param x input
* @return derivative of the log gamma input
*/
static float64_t dlgamma(float64_t x);
/** Representation of a Sigmoid function for the fit_sigmoid function */
struct SigmoidParamters
{
/** parameter a */
float64_t a;
/** parameter b */
float64_t b;
};
/** Converts a given vector of scores to calibrated probabilities by fitting a
* sigmoid function using the method described in
* Lin, H., Lin, C., and Weng, R. (2007).
* A note on Platt's probabilistic outputs for support vector machines.
*
* This can be used to transform scores to probabilities as setting
* \f$pf=x*a+b\f$ for a given score \f$x\f$ and computing
* \f$\frac{\exp(-f)}{1+}exp(-f)}\f$ if \f$f\geq 0\f$ and
* \f$\frac{1}{(1+\exp(f)}\f$ otherwise
*
* @param scores scores to fit the sigmoid to
* @return struct containing the sigmoid's shape parameters a and b
*/
static SigmoidParamters fit_sigmoid(SGVector<float64_t> scores);
#ifdef HAVE_EIGEN3
/** The log determinant of a dense matrix
*
* The log determinant of a positive definite symmetric real valued
* matrix is calculated as
* \f[
* \text{log\_determinant}(M)
* = \text{log}(\text{determinant}(L)\times\text{determinant}(L'))
* = 2\times \sum_{i}\text{log}(L_{i,i})
* \f]
* Where, \f$M = L\times L'\f$ as per Cholesky decomposition.
*
* @param m input matrix
* @return the log determinant value
*/
static float64_t log_det(SGMatrix<float64_t> m);
/** The log determinant of a sparse matrix
*
* The log determinant of symmetric positive definite sparse matrix
* is calculated in a similar way as the dense case. But using
* cholesky decomposition on sparse matrices may suffer from fill-in
* phenomenon, i.e. the factors may not be as sparse. The
* SimplicialCholesky module for sparse matrix in eigen3 library
* uses an approach called approximate minimum degree reordering,
* or amd, which permutes the matrix beforehand and results in much
* sparser factors. If \f$P\f$ is the permutation matrix, it computes
* \f$\text{LLT}(P\times M\times P^{-1}) = L\times L'\f$.
*
* @param m input sparse matrix
* @return the log determinant value
*/
static float64_t log_det(const SGSparseMatrix<float64_t> m);
/** Sampling from a multivariate Gaussian distribution with
* dense covariance matrix
*
* Sampling is performed by taking samples from \f$N(0, I)\f$, then
* using cholesky factor of the covariance matrix, \f$\Sigma\f$ and
* performing
* \f[S_{N(\mu,\Sigma)}=S_{N(0,I)}*L^{T}+\mu\f]
* where \f$\Sigma=L*L^{T}\f$ and \f$\mu\f$ is the mean vector.
*
* @param mean the mean vector
* @param cov the covariance matrix
* @param N number of samples
* @param precision_matrix if true, sample from N(mu,C^-1)
* @return the sample matrix of size \f$N\times dim\f$
*/
static SGMatrix<float64_t> sample_from_gaussian(SGVector<float64_t> mean,
SGMatrix<float64_t> cov, int32_t N=1, bool precision_matrix=false);
/** Sampling from a multivariate Gaussian distribution with
* sparse covariance matrix
*
* Sampling is performed in similar way as of dense covariance
* matrix, but direct cholesky factorization of sparse matrices
* could be inefficient. So, this method uses permutation matrix
* for factorization and then permutes back the final samples
* before adding the mean.
*
* @param mean the mean vector
* @param cov the covariance matrix
* @param N number of samples
* @param precision_matrix if true, sample from N(mu,C^-1)
* @return the sample matrix of size \f$N\times dim\f$
*/
static SGMatrix<float64_t> sample_from_gaussian(SGVector<float64_t> mean,
SGSparseMatrix<float64_t> cov, int32_t N=1, bool precision_matrix=false);
#endif //HAVE_EIGEN3
protected:
/** Power series for incomplete beta integral.
* Use when \f$bx\f$ is small and \f$x\f$ not too close to \f$1\f$.
*
* Taken from ALGLIB under gpl2+
*/
static float64_t ibetaf_incompletebetaps(float64_t a, float64_t b,
float64_t x, float64_t maxgam);
/** Continued fraction expansion #1 for incomplete beta integral
*
* Taken from ALGLIB under gpl2+
*/
static float64_t ibetaf_incompletebetafe(float64_t a, float64_t b,
float64_t x, float64_t big, float64_t biginv);
/** Continued fraction expansion #2 for incomplete beta integral
*
* Taken from ALGLIB under gpl2+
*/
static float64_t ibetaf_incompletebetafe2(float64_t a, float64_t b,
float64_t x, float64_t big, float64_t biginv);
/** method to make ALGLIB integration easier */
static inline bool equal(float64_t a, float64_t b) { return a==b; }
/** method to make ALGLIB integration easier */
static inline bool not_equal(float64_t a, float64_t b) { return a!=b; }
/** method to make ALGLIB integration easier */
static inline bool less(float64_t a, float64_t b) { return a<b; }
/** method to make ALGLIB integration easier */
static inline bool less_equal(float64_t a, float64_t b) { return a<=b; }
/** method to make ALGLIB integration easier */
static inline bool greater(float64_t a, float64_t b) { return a>b; }
/** method to make ALGLIB integration easier */
static inline bool greater_equal(float64_t a, float64_t b) { return a>=b; }
};
}
#endif /* __STATISTICS_H_ */
|