This file is indexed.

/usr/include/shogun/metric/LMNNImpl.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Fernando J. Iglesias Garcia
 * Copyright (C) 2013 Fernando J. Iglesias Garcia
 */

#ifndef LMNNIMPL_H_
#define LMNNIMPL_H_

#include <shogun/lib/config.h>

#ifdef HAVE_EIGEN3
#ifdef HAVE_LAPACK

#include <shogun/lib/common.h>
#include <shogun/lib/SGMatrix.h>
#include <shogun/features/DenseFeatures.h>
#include <shogun/labels/MulticlassLabels.h>
#include <shogun/distance/EuclideanDistance.h>
#include <Eigen/Dense>

#include <set>
#include <vector>

#ifndef DOXYGEN_SHOULD_SKIP_THIS

namespace shogun
{

struct CImpostorNode;

typedef std::set<CImpostorNode> ImpostorsSetType;

/**
 * Struct ImpostorNode used to represent the sets of impostors. Each of the elements
 * in a set of impostors is an impostor node. An impostor node holds information
 * of the indices of the example, the target and the impostor.
 */
struct CImpostorNode
{
	/**
	 * Standard impostor node construct
	 *
	 * @param ex example index
	 * @param tar target index
	 * @param imp impostor index
	 */
	CImpostorNode(index_t ex, index_t tar, index_t imp);

	/**
	 * The index of the example defines which impostor node is larger
	 * (the larger example index, the larger impostor node). In case
	 * of equality, then the target index decides, and, in the event
	 * of equality in both example and target indices. then the impostors
	 * defines which node is largest.
	 *
	 * @param rhs right hand side argument of the operator
	 * @return whether the lhs argument was smaller than the rhs, equal to,
	 * or larger
	 */
	bool operator<(const CImpostorNode& rhs) const;

	/** example index */
	index_t example;

	/** target index */
	index_t target;

	/** impostor index */
	index_t impostor;
};

/**
 * Class CLMNNImpl used to hide the implementation details of LMNN.
 */
class CLMNNImpl
{
	public:

		/**
		 * check feature and label size, dimensions of the initial transform, etc
		 * if the initial transform has not been initialized, do it using PCA
		 */
		static void check_training_setup(CFeatures* features, const CLabels* labels, SGMatrix<float64_t>& init_transform);

		/**
		 * for each feature in x, find its target neighbors; this is, its k
		 * nearest neighbors with the same label as indicated by y
		 */
		static SGMatrix<index_t> find_target_nn(CDenseFeatures<float64_t>* x, CMulticlassLabels* y, int32_t k);

		/** sum the outer products indicated by target_nn */
		static Eigen::MatrixXd sum_outer_products(CDenseFeatures<float64_t>* x, const SGMatrix<index_t> target_nn);

		/** find the impostors that remain after applying the transformation L */
		static ImpostorsSetType find_impostors(CDenseFeatures<float64_t>* x, CMulticlassLabels* y, const Eigen::MatrixXd& L, const SGMatrix<index_t> target_nn, const uint32_t iter, const uint32_t correction);

		/** update the gradient using the last transition in the impostors sets */
		static void update_gradient(CDenseFeatures<float64_t>* x, Eigen::MatrixXd& G, const ImpostorsSetType& Nc, const ImpostorsSetType& Np, float64_t mu);

		/** take gradient step and project onto positive semi-definite cone if necessary */
		static void gradient_step(Eigen::MatrixXd& L, const Eigen::MatrixXd& G, float64_t stepsize, bool diagonal);

		/** correct step size depending on the last fluctuation of the objective */
		static void correct_stepsize(float64_t& stepsize, const SGVector<float64_t> obj, const uint32_t iter);

		/**
		 * check if the training should terminate; this can happen due to e.g. convergence reached
		 * (the step size became too small or the objective in the last iterations is roughly constant),
		 * or maximum number of iterations reached
		 */
		static bool check_termination(float64_t stepsize, const SGVector<float64_t> obj, uint32_t iter, uint32_t maxiter, float64_t stepsize_threshold, float64_t obj_threshold);

	private:

		/** initial default transform given by PCA */
		static SGMatrix<float64_t> compute_pca_transform(CDenseFeatures<float64_t>* features);

		/**
		 * compute squared distances plus margin between each example and its target neighbors
		 * in the transformed feature space
		 */
		static Eigen::MatrixXd compute_sqdists(Eigen::MatrixXd& L, const SGMatrix<index_t> target_nn);

		/**
		 * compute squared distances between examples and impostors in the given impostors set
		 * Nexact
		 */
		static SGVector<float64_t> compute_impostors_sqdists(Eigen::MatrixXd& L, const ImpostorsSetType& Nexact);

		/** find impostors; variant computing the impostors exactly, using all the data */
		static ImpostorsSetType find_impostors_exact(Eigen::MatrixXd& LX, const Eigen::MatrixXd& sqdists, CMulticlassLabels* y, const SGMatrix<index_t> target_nn, int32_t k);

		/** find impostors; approximate variant, using the last exact set of impostors */
		static ImpostorsSetType find_impostors_approx(Eigen::MatrixXd& LX, const Eigen::MatrixXd& sqdists, const ImpostorsSetType& Nexact, const SGMatrix<index_t> target_nn);

		/** get the indices of the examples whose label is equal to yi */
		static std::vector<index_t> get_examples_label(CMulticlassLabels* y, float64_t yi);

		/** get the indices of the examples whose label is greater than yi */
		static std::vector<index_t> get_examples_gtlabel(CMulticlassLabels* y, float64_t yi);

		/**
		 * create Euclidean distance where the lhs features are the features in x indexed
		 * by the elements in a, and the rhs features are the ones indexed by b; caller
		 * is responsible of releasing memory
		 */
		static CEuclideanDistance* setup_distance(CDenseFeatures<float64_t>* x, std::vector<index_t>& a, std::vector<index_t>& b);


}; /* class CLMNNImpl */

} /* namespace shogun */

#endif /* DOXYGEN_SHOULD_SKIP_THIS */

#endif /* HAVE_LAPACK */
#endif /* HAVE_EIGEN3 */

#endif /* _LMNNIMPL_H_ */