This file is indexed.

/usr/include/shogun/multiclass/MulticlassOneVsRestStrategy.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2012 Chiyuan Zhang
 * Written (W) 2013 Shell Hu and Heiko Strathmann
 * Copyright (C) 2012 Chiyuan Zhang
 */

#ifndef MULTICLASSONEVSRESTSTRATEGY_H__
#define MULTICLASSONEVSRESTSTRATEGY_H__

#include <shogun/multiclass/MulticlassStrategy.h>

namespace shogun
{

/** @brief multiclass one vs rest strategy
 * used to train generic multiclass machines
 * for K-class problems with building
 * ensemble of K binary classifiers
 *
 * multiclass probabilistic outputs can be
 * obtained by using the heuristics described in [1]
 *
 * [1] J. Milgram, M. Cheriet, R.Sabourin, "One Against One" or "One Against One":
 * Which One is Better for Handwriting Recognition with SVMs?
 */
class CMulticlassOneVsRestStrategy: public CMulticlassStrategy
{
public:
	/** constructor */
	CMulticlassOneVsRestStrategy();

	/** constructor
	 * @param prob_heuris probability estimation heuristic
	 */
	CMulticlassOneVsRestStrategy(EProbHeuristicType prob_heuris);

	/** destructor */
	virtual ~CMulticlassOneVsRestStrategy() {}

	/** start training */
	virtual void train_start(CMulticlassLabels *orig_labels, CBinaryLabels *train_labels)
	{
		CMulticlassStrategy::train_start(orig_labels, train_labels);
	}

	/** has more training phase */
	virtual bool train_has_more()
	{
		return m_train_iter < m_num_classes;
	}

	/** prepare for the next training phase.
	 * @return NULL, since no subset is needed in one-vs-rest strategy
	 */
	virtual SGVector<int32_t> train_prepare_next();

	/** decide the final label.
	 * @param outputs a vector of output from each machine (in that order)
	 */
	virtual int32_t decide_label(SGVector<float64_t> outputs);

	/** decide the final label.
	 * @param outputs a vector of output from each machine (in that order)
	 * @param n_outputs number of outputs
	 */
	virtual SGVector<index_t> decide_label_multiple_output(SGVector<float64_t> outputs, int32_t n_outputs);

	/** get number of machines used in this strategy.
	 */
	virtual int32_t get_num_machines()
	{
		return m_num_classes;
	}

	/** get name */
	virtual const char* get_name() const
	{
		return "MulticlassOneVsRestStrategy";
	};

	/** rescale multiclass outputs according to the selected heuristic
	 * @param outputs a vector of output from each machine (in that order)
	 */
	virtual void rescale_outputs(SGVector<float64_t> outputs);

	/** rescale multiclass outputs according to the selected heuristic
	 * this function only being called with OVA_SOFTMAX heuristic
	 * @param outputs a vector of output from each machine (in that order)
	 * @param As fitted sigmoid parameters a one for each machine
	 * @param Bs fitted sigmoid parameters b one for each machine
	 */
	virtual void rescale_outputs(SGVector<float64_t> outputs,
			const SGVector<float64_t> As, const SGVector<float64_t> Bs);

protected:
	/** OVA normalization heuristic
	 * @param outputs a vector of output from each machine (in that order)
	 */
	void rescale_heuris_norm(SGVector<float64_t> outputs);

	/** OVA softmax heuristic
	 * @param outputs a vector of output from each machine (in that order)
	 * @param As fitted sigmoid parameters a one for each machine
	 * @param Bs fitted sigmoid parameters b one for each machine
	 */
	void rescale_heuris_softmax(SGVector<float64_t> outputs,
			const SGVector<float64_t> As, const SGVector<float64_t> Bs);

};

} // namespace shogun

#endif /* end of include guard: MULTICLASSONEVSRESTSTRATEGY_H__ */