This file is indexed.

/usr/include/shogun/preprocessor/KernelPCA.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2011 Soeren Sonnenburg
 * Copyright (C) 2011 Berlin Institute of Technology
 */

#ifndef KERNELPCA_H__
#define KERNELPCA_H__
#include <shogun/lib/config.h>
#ifdef HAVE_LAPACK

#include <shogun/preprocessor/DimensionReductionPreprocessor.h>
#include <shogun/features/Features.h>
#include <shogun/kernel/Kernel.h>
#include <shogun/lib/common.h>

namespace shogun
{

class CFeatures;
class CKernel;

/** @brief Preprocessor KernelPCA performs kernel principal component analysis
 *
 * Schoelkopf, B., Smola, A. J., & Mueller, K. R. (1999).
 * Kernel Principal Component Analysis.
 * Advances in kernel methods support vector learning, 1327(3), 327-352. MIT Press.
 * Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.8744
 *
 */
class CKernelPCA: public CDimensionReductionPreprocessor
{
public:
		/** default constructor
		 */
		CKernelPCA();

		/** constructor
		 * @param k kernel to be used
		 */
		CKernelPCA(CKernel* k);

		virtual ~CKernelPCA();

		/// initialize preprocessor from features
		virtual bool init(CFeatures* features);
		/// cleanup
		virtual void cleanup();

		/// apply preproc on feature matrix
		/// result in feature matrix
		/// return pointer to feature_matrix, i.e. f->get_feature_matrix();
		virtual SGMatrix<float64_t> apply_to_feature_matrix(CFeatures* features);

		/// apply preproc on single feature vector
		/// result in feature matrix
		virtual SGVector<float64_t> apply_to_feature_vector(SGVector<float64_t> vector);

		/** apply to string features
		 * @param features
		 */
		virtual CDenseFeatures<float64_t>* apply_to_string_features(CFeatures* features);

		/** get transformation matrix, i.e. eigenvectors
		 *
		 */
		SGMatrix<float64_t> get_transformation_matrix() const
		{
			return m_transformation_matrix;
		}

		/** get bias of KPCA
		 *
		 */
		SGVector<float64_t> get_bias_vector() const
		{
			return m_bias_vector;
		}

		/** @return object name */
		virtual const char* get_name() const { return "KernelPCA"; }

		/** @return the type of preprocessor */
		virtual EPreprocessorType get_type() const { return P_KERNELPCA; }

	protected:

		/** default init */
		void init();

	protected:

		/** features used by init. needed for apply */
		CFeatures* m_init_features;

		/** transformation matrix */
		SGMatrix<float64_t> m_transformation_matrix;

		/** bias vector */
		SGVector<float64_t> m_bias_vector;

		/** true when already initialized */
		bool m_initialized;

};
}
#endif
#endif