This file is indexed.

/usr/include/shogun/transfer/multitask/MultitaskLeastSquaresRegression.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Copyright (C) 2012 Sergey Lisitsyn
 */

#ifndef  MULTITASKLSREGRESSION_H_
#define  MULTITASKLSREGRESSION_H_

#include <shogun/lib/config.h>
#include <shogun/transfer/multitask/TaskRelation.h>
#include <shogun/transfer/multitask/MultitaskLinearMachine.h>

namespace shogun
{
/** @brief class Multitask Least Squares Regression, a
 * machine to solve regression problems with a few tasks
 * related via group or tree. Based on L1/Lq regression
 * for groups and L1/L2 for trees.
 *
 * The underlying solver is based on the SLEP library.
 *
 */
class CMultitaskLeastSquaresRegression : public CMultitaskLinearMachine
{

	public:
		/** problem type */
		MACHINE_PROBLEM_TYPE(PT_REGRESSION)

		/** default constructor */
		CMultitaskLeastSquaresRegression();

		/** constructor
		 *
		 * @param z regularization coefficient
		 * @param training_data training features
		 * @param training_labels training labels
		 * @param task_relation task relation
		 */
		CMultitaskLeastSquaresRegression(
		     float64_t z, CDotFeatures* training_data,
		     CRegressionLabels* training_labels, CTaskRelation* task_relation);

		/** destructor */
		virtual ~CMultitaskLeastSquaresRegression();

		/** get name */
		virtual const char* get_name() const
		{
			return "MultitaskLeastSquaresRegression";
		}

		/** get max iter */
		int32_t get_max_iter() const;
		/** get q */
		float64_t get_q() const;
		/** get regularization */
		int32_t get_regularization() const;
		/** get termination */
		int32_t get_termination() const;
		/** get tolerance */
		float64_t get_tolerance() const;
		/** get z */
		float64_t get_z() const;

		/** set max iter */
		void set_max_iter(int32_t max_iter);
		/** set q */
		void set_q(float64_t q);
		/** set regularization */
		void set_regularization(int32_t regularization);
		/** set termination */
		void set_termination(int32_t termination);
		/** set tolerance */
		void set_tolerance(float64_t tolerance);
		/** set z */
		void set_z(float64_t z);

		/** applies to one vector */
		virtual float64_t apply_one(int32_t i);

	protected:

		/** train machine */
		virtual bool train_machine(CFeatures* data=NULL);

		/** train locked implementation */
		virtual bool train_locked_implementation(SGVector<index_t>* tasks);

	private:

		/** register parameters */
		void register_parameters();

		/** initialize parameters */
		void initialize_parameters();

	protected:

		/** regularization type */
		int32_t m_regularization;

		/** termination criteria */
		int32_t m_termination;

		/** max iteration */
		int32_t m_max_iter;

		/** tolerance */
		float64_t m_tolerance;

		/** q of L1/Lq */
		float64_t m_q;

		/** regularization coefficient */
		float64_t m_z;

};
}
#endif