/usr/include/shogun/transfer/multitask/MultitaskLinearMachine.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Copyright (C) 2012 Sergey Lisitsyn
*/
#ifndef MULTITASKMACHINE_H_
#define MULTITASKMACHINE_H_
#include <shogun/lib/config.h>
#include <shogun/machine/LinearMachine.h>
#include <shogun/transfer/multitask/TaskRelation.h>
#include <shogun/transfer/multitask/TaskGroup.h>
#include <shogun/transfer/multitask/TaskTree.h>
#include <shogun/transfer/multitask/Task.h>
#include <vector>
#include <set>
using namespace std;
namespace shogun
{
/** @brief class MultitaskLinearMachine, a base class
* for linear multitask classifiers
*/
class CMultitaskLinearMachine : public CLinearMachine
{
public:
/** default constructor */
CMultitaskLinearMachine();
/** constructor
*
* @param training_data training features
* @param training_labels training labels
* @param task_relation task relation
*/
CMultitaskLinearMachine(
CDotFeatures* training_data,
CLabels* training_labels, CTaskRelation* task_relation);
/** destructor */
virtual ~CMultitaskLinearMachine();
/** get name */
virtual const char* get_name() const
{
return "MultitaskLinearMachine";
}
/** getter for current task
* @return current task index
*/
int32_t get_current_task() const;
/** setter for current task
* @param task task index
*/
void set_current_task(int32_t task);
/** get w
*
* @return weight vector
*/
virtual SGVector<float64_t> get_w() const;
/** set w
*
* @param src_w new w
*/
virtual void set_w(const SGVector<float64_t> src_w);
/** set bias
*
* @param b new bias
*/
virtual void set_bias(float64_t b);
/** get bias
*
* @return bias
*/
virtual float64_t get_bias();
/** getter for task relation
* @return task relation
*/
CTaskRelation* get_task_relation() const;
/** setter for task relation
* @param task_relation task relation
*/
void set_task_relation(CTaskRelation* task_relation);
/** @return whether machine supports locking */
virtual bool supports_locking() const { return true; }
/** post lock */
virtual void post_lock(CLabels* labels, CFeatures* features_);
/** train on given indices */
virtual bool train_locked(SGVector<index_t> indices);
/** applies on given indices */
virtual CBinaryLabels* apply_locked_binary(SGVector<index_t> indices);
/** applies to one vector */
virtual float64_t apply_one(int32_t i);
protected:
/** apply get outputs */
virtual SGVector<float64_t> apply_get_outputs(CFeatures* data=NULL);
/** train machine */
virtual bool train_machine(CFeatures* data=NULL);
/** train locked implementation */
virtual bool train_locked_implementation(SGVector<index_t>* tasks);
/** subset mapped task indices */
SGVector<index_t>* get_subset_tasks_indices();
private:
/** register parameters */
void register_parameters();
protected:
/** current task index */
int32_t m_current_task;
/** feature tree */
CTaskRelation* m_task_relation;
/** tasks w's */
SGMatrix<float64_t> m_tasks_w;
/** tasks interceptss */
SGVector<float64_t> m_tasks_c;
/** vector of sets of indices */
vector< set<index_t> > m_tasks_indices;
};
}
#endif
|