/usr/include/shogun/ui/GUIClassifier.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 1999-2008 Soeren Sonnenburg
* Copyright (C) 1999-2008 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _GUICLASSIFIER_H__
#define _GUICLASSIFIER_H__
#include <shogun/lib/config.h>
#include <shogun/base/SGObject.h>
#include <shogun/machine/Machine.h>
#include <shogun/classifier/svm/SVM.h>
namespace shogun
{
class CSGInterface;
/** @brief UI classifier */
class CGUIClassifier : public CSGObject
{
public:
/** constructor */
CGUIClassifier() { };
/** constructor
* @param interface
*/
CGUIClassifier(CSGInterface* interface);
/** destructor */
~CGUIClassifier();
/** create new classifier */
bool new_classifier(char* name, int32_t d=6, int32_t from_d=40);
/** set maximum train time */
bool set_max_train_time(float64_t max);
/** load classifier from file */
bool load(char* filename, char* type);
/** save
* @param param
*/
bool save(char* param);
/** classify */
CLabels* classify();
/** classify kernel machine */
CLabels* classify_kernelmachine();
/** classify distance machine */
CLabels* classify_distancemachine();
/** classify linear */
CLabels* classify_linear();
/** classify byte linear */
CLabels* classify_byte_linear();
/** classify example
* @param idx
* @param result
*/
bool classify_example(int32_t idx, float64_t& result);
/** get classifier */
inline CMachine* get_classifier() { return classifier; }
/** get trained classifier
* @param weights
* @param rows
* @param cols
* @param bias
* @param brows
* @param bcols
* @param idx
*/
bool get_trained_classifier(
float64_t* &weights, int32_t& rows, int32_t& cols,
float64_t*& bias, int32_t& brows, int32_t& bcols,
int32_t idx=-1); // which SVM in Multiclass
/** get number of SVMs in Multiclass */
int32_t get_num_svms();
/** get svm
* @param weights
* @param rows
* @param cols
* @param bias
* @param brows
* @param bcols
* @param idx
*/
bool get_svm(
float64_t* &weights, int32_t& rows, int32_t& cols,
float64_t*& bias, int32_t& brows, int32_t& bcols,
int32_t idx=-1); // which SVM in Multiclass
/** get linear
* @param weights
* @param rows
* @param cols
* @param bias
* @param brows
* @param bcols
*/
bool get_linear(
float64_t* &weights, int32_t& rows, int32_t& cols,
float64_t*& bias, int32_t& brows, int32_t& bcols);
/** get clustering
* @param weights
* @param rows
* @param cols
* @param bias
* @param brows
* @param bcols
*/
bool get_clustering(
float64_t* &weights, int32_t& rows, int32_t& cols,
float64_t*& bias, int32_t& brows, int32_t& bcols);
// perceptron learnrate & maxiter
/** set perceptron parameters
* @param lernrate
* @param maxiter
*/
bool set_perceptron_parameters(float64_t lernrate, int32_t maxiter);
// SVM functions
/** set svm C
* @param C1
* @param C2
*/
bool set_svm_C(float64_t C1, float64_t C2);
/** set svm bufsize
* @param bufsize
*/
bool set_svm_bufsize(int32_t bufsize);
/** set svm qpsize
* @param qpsize
*/
bool set_svm_qpsize(int32_t qpsize);
/** set svm max qpsize
* @param max_qpsize
*/
bool set_svm_max_qpsize(int32_t max_qpsize);
/** set svm shrinking enabled
* @param enabled
*/
bool set_svm_shrinking_enabled(bool enabled);
/** set svm nu
* @param nu
*/
bool set_svm_nu(float64_t nu);
/** set svm batch computation enabled
* @param enabled
*/
bool set_svm_batch_computation_enabled(bool enabled);
/** set do auc maximization
* @param do_auc
*/
bool set_do_auc_maximization(bool do_auc);
/** set svm linadd enabled
* @param enabled
*/
bool set_svm_linadd_enabled(bool enabled);
/** set svm bias enabled
* @param enabled
*/
bool set_svm_bias_enabled(bool enabled);
/** set mkl interleaved enabled
* @param enabled
*/
bool set_mkl_interleaved_enabled(bool enabled);
/** set svm epsilon
* @param epsilon
*/
bool set_svm_epsilon(float64_t epsilon);
/** set svr tube epsilon
* @param tube_epsilon
*/
bool set_svr_tube_epsilon(float64_t tube_epsilon);
/** set svm mkl parameters
* @param weight_epsilon
* @param C_mkl
* @param mkl_norm
*/
bool set_svm_mkl_parameters(
float64_t weight_epsilon, float64_t C_mkl, float64_t mkl_norm);
/** set mkl block norm
* @param mkl_bnorm
*/
bool set_mkl_block_norm(float64_t mkl_bnorm);
/** set elasticnet lambda
* @param lambda
*/
bool set_elasticnet_lambda(float64_t lambda);
/** set svm precompute enabled
* @param precompute
*/
bool set_svm_precompute_enabled(int32_t precompute);
/** set KRR's tau */
bool set_krr_tau(float64_t tau=1);
/** set solver type */
bool set_solver(char* solver);
/** set constraint generator */
bool set_constraint_generator(char* cg);
/** train MKL multiclass*/
bool train_mkl_multiclass();
/** train MKL */
bool train_mkl();
/** train SVM */
bool train_svm();
/** train K-nearest-neighbour */
bool train_knn(int32_t k=3);
/** train kernel ridge regression */
bool train_krr();
/** train clustering */
bool train_clustering(int32_t k=3, int32_t max_iter=1000);
/** train linear classifier
* @param gamma gamma parameter of LDA
*/
bool train_linear(float64_t gamma=0);
/** train sparse linear classifier */
bool train_sparse_linear();
/** train WD OCAS */
bool train_wdocas();
/** @return object name */
virtual const char* get_name() const { return "GUIClassifier"; }
protected:
/** ui */
CSGInterface* ui;
/** classifier */
CMachine* classifier;
/** max train time */
float64_t max_train_time;
/** perceptron learnrate */
float64_t perceptron_learnrate;
/** perceptron maxiter */
int32_t perceptron_maxiter;
/** svm qpsize */
int32_t svm_qpsize;
/** svm bufsize */
int32_t svm_bufsize;
/** svm max qpsize */
int32_t svm_max_qpsize;
/** mkl norm */
float64_t mkl_norm;
/** mkl block norm */
float64_t mkl_block_norm;
/** ent lambda */
float64_t ent_lambda;
/** svm weight epsilon */
float64_t svm_weight_epsilon;
/** svm epsilon */
float64_t svm_epsilon;
/** svm tube epsilon */
float64_t svm_tube_epsilon;
/** svm nu */
float64_t svm_nu;
/** svm C1 */
float64_t svm_C1;
/** svm C2 */
float64_t svm_C2;
/** C mkl */
float64_t C_mkl;
/** krr tau */
float64_t krr_tau;
/** mkl use interleaved */
bool mkl_use_interleaved;
/** svm use bias */
bool svm_use_bias;
/** svm use batch computation */
bool svm_use_batch_computation;
/** svm use linadd */
bool svm_use_linadd;
/** svm use precompute */
bool svm_use_precompute;
/** svm use precompute subkernel */
bool svm_use_precompute_subkernel;
/** svm use precompute subkernel light */
bool svm_use_precompute_subkernel_light;
/** svm use shrinking */
bool svm_use_shrinking;
/** svm do auc maximization */
bool svm_do_auc_maximization;
/** constraint generator */
CSVM* constraint_generator;
/** solver type */
ESolverType solver_type;
};
}
#endif
|