/usr/include/sofa/component/mapping/ArticulatedSystemMapping.inl is in libsofa1-dev 1.0~beta4-10ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 | /******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#ifndef SOFA_COMPONENT_MAPPING_ARTICULATEDSYSTEMMAPPING_INL
#define SOFA_COMPONENT_MAPPING_ARTICULATEDSYSTEMMAPPING_INL
#include <sofa/component/mapping/ArticulatedSystemMapping.h>
#include <sofa/simulation/common/Simulation.h>
#include <sofa/core/objectmodel/BaseContext.h>
#include <sofa/helper/gl/template.h>
namespace sofa
{
namespace component
{
namespace mapping
{
template <class BasicMapping>
ArticulatedSystemMapping<BasicMapping>::ArticulatedSystemMapping(In* from, Out* to)
: Inherit(from, to)
, rootModel(NULL), ahc(NULL)
, m_rootModelName(initData(&m_rootModelName, std::string(""), "rootModel", "Root position if a rigid root model is specified."))
{
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::init()
{
GNode* context = dynamic_cast<GNode*>(this->fromModel->getContext());
context->getNodeObject(ahc);
articulationCenters = ahc->getArticulationCenters();
OutVecCoord& xto = *this->toModel->getX();
InVecCoord& xfrom = *this->fromModel->getX();
ArticulationPos.clear();
ArticulationAxis.clear();
ArticulationPos.resize(xfrom.size());
ArticulationAxis.resize(xfrom.size());
if (!m_rootModelName.getValue().empty())
{
std::vector< std::string > tokens(0);
std::string str = m_rootModelName.getValue();
std::string::size_type begin_index = 0;
std::string::size_type end_index = 0;
if (rootModel)
{
serr << "Root Model found : Name = " << rootModel->getName() << sendl;
}
while ( (end_index = str.find("/", begin_index)) != std::string::npos )
{
tokens.push_back(str.substr(begin_index, end_index - begin_index));
begin_index = end_index + 1;
}
tokens.push_back(str.substr(begin_index));
GNode* node = context;
std::vector< std::string >::iterator it = tokens.begin();
std::vector< std::string >::iterator itEnd = tokens.end();
while (it != itEnd)
{
if ( it->compare("..") == 0 )
{
if (node != 0)
node = node->parent;
}
else
{
if (node != 0)
node = node->getChild(*it);
}
++it;
}
if (node != 0)
node->getNodeObject(rootModel);
}
else
{
context->parent->getNodeObject(rootModel);
}
CoordinateBuf.clear();
CoordinateBuf.resize(xfrom.size());
for (unsigned int c=0; c<xfrom.size(); c++)
{
CoordinateBuf[c].x() = 0.0;
}
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.begin();
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = articulationCenters.end();
for (; ac != acEnd; ac++)
{
(*ac)->OrientationArticulationCenter.clear();
(*ac)->DisplacementArticulationCenter.clear();
(*ac)->Disp_Rotation.clear();
// sout << "(*ac)->OrientationArticulationCenter : " << (*ac)->OrientationArticulationCenter << sendl;
// todo : warning if a (*a)->articulationIndex.getValue() exceed xfrom size !
}
apply(xto, xfrom, (rootModel==NULL ? NULL : rootModel->getX()));
/*
OutVecDeriv& vto = *this->toModel->getV();
InVecDeriv& vfrom = *this->fromModel->getV();
applyJT(vfrom, vto);
*/
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::reset()
{
init();
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::apply( typename Out::VecCoord& out, const typename In::VecCoord& in, const typename InRoot::VecCoord* inroot )
{
// Copy the root position if a rigid root model is present
if (rootModel)
{
out[0] = (*inroot)[rootModel->getSize()-1];
// sout << "Root Model Name = " << rootModel->getName() << sendl;
// out[0] = (*rootModel->getX())[rootModel->getSize()-1];
}
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.begin();
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = articulationCenters.end();
for (; ac != acEnd; ac++)
{
int parent = (*ac)->parentIndex.getValue();
int child = (*ac)->childIndex.getValue();
// Before computing the child position, it is placed with the same orientation than its parent
// and at the position compatible with the definition of the articulation center
// (see initTranslateChild function for details...)
Quat quat_child_buf = out[child].getOrientation();
// The position of the articulation center can be deduced using the 6D position of the parent:
// only useful for visualisation of the mapping => NO ! Used in applyJ and applyJT
(*ac)->globalPosition.setValue(out[parent].getCenter() +
out[parent].getOrientation().rotate((*ac)->posOnParent.getValue()));
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aEnd = articulations.end();
int process = (*ac)->articulationProcess.getValue();
switch(process) {
case 0: // 0-(default) articulation are treated one by one, the axis of the second articulation is updated by the potential rotation of the first articulation
// potential problems could arise when rotation exceed 90° (known problem of euler angles)
{
// the position of the child is reset to its rest position (based on the postion of the articulation center)
out[child].getOrientation() = out[parent].getOrientation();
out[child].getCenter() = out[parent].getCenter() + (*ac)->initTranslateChild(out[parent].getOrientation());
Vec<3,OutReal> APos;
APos = (*ac)->globalPosition.getValue();
for (; a != aEnd; a++)
{
int ind = (*a)->articulationIndex.getValue();
InCoord value = in[ind];
Vec<3,Real> axis = out[child].getOrientation().rotate((*a)->axis.getValue());
ArticulationAxis[ind] = axis;
if ((*a)->rotation.getValue())
{
Quat dq;
dq.axisToQuat(axis, value.x());
out[child].getCenter() += (*ac)->translateChild(dq, out[child].getOrientation());
out[child].getOrientation() += dq;
}
if ((*a)->translation.getValue())
{
out[child].getCenter() += axis*value.x();
APos += axis*value.x();
}
ArticulationPos[ind]= APos;
}
break;
}
case 1: // the axis of the articulations are linked to the parent - rotations are treated by successive increases -
{
//sout<<"Case 1"<<sendl;
// no reset of the position of the child its position is corrected at the end to respect the articulation center.
for (; a != aEnd; a++)
{
int ind = (*a)->articulationIndex.getValue();
InCoord value = in[ind];
InCoord prev_value = CoordinateBuf[ind];
Vec<3,Real> axis = out[parent].getOrientation().rotate((*a)->axis.getValue());
ArticulationAxis[ind]=axis;
// the increment of rotation and translation are stored in dq and disp
if ((*a)->rotation.getValue() )
{
Quat r;
r.axisToQuat(axis, value.x() - prev_value.x());
// add the contribution into the quaternion that provides the actual orientation of the articulation center
(*ac)->OrientationArticulationCenter+=r;
}
if ((*a)->translation.getValue())
{
(*ac)->DisplacementArticulationCenter+=axis*(value.x() - prev_value.x());
}
}
//// in case 1: the rotation of the axis of the articulation follows the parent -> translation are treated "before":
// step 1: compute the new position of the articulation center and the articulation pos
// rq: the articulation center folows the translations
(*ac)->globalPosition.setValue(out[parent].getCenter() + out[parent].getOrientation().rotate((*ac)->posOnParent.getValue()) + (*ac)->DisplacementArticulationCenter);
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();
for (; a != aEnd; a++)
{
Vec<3,OutReal> APos;
APos = (*ac)->globalPosition.getValue();
ArticulationPos[(*a)->articulationIndex.getValue()]=APos;
}
// step 2: compute the position of the child
out[child].getOrientation() = out[parent].getOrientation() + (*ac)->OrientationArticulationCenter;
out[child].getCenter() = (*ac)->globalPosition.getValue() - out[child].getOrientation().rotate( (*ac)->posOnChild.getValue() );
break;
}
case 2: // the axis of the articulations are linked to the child (previous pos) - rotations are treated by successive increases -
{
//sout<<"Case 2"<<sendl;
// no reset of the position of the child its position is corrected at the end to respect the articulation center.
//Quat dq(0,0,0,1);
Vec<3,Real> disp(0,0,0);
for (; a != aEnd; a++)
{
int ind = (*a)->articulationIndex.getValue();
InCoord value = in[ind];
InCoord prev_value = CoordinateBuf[ind];
Vec<3,Real> axis = quat_child_buf.rotate((*a)->axis.getValue());
ArticulationAxis[ind]=axis;
// the increment of rotation and translation are stored in dq and disp
if ((*a)->rotation.getValue() )
{
Quat r;
r.axisToQuat(axis, value.x() - prev_value.x());
// add the contribution into the quaternion that provides the actual orientation of the articulation center
(*ac)->OrientationArticulationCenter+=r;
}
if ((*a)->translation.getValue())
{
disp += axis*(value.x()) ;
}
//// in case 2: the rotation of the axis of the articulation follows the child -> translation are treated "after"
//// ArticulationPos do not move
Vec<3,OutReal> APos;
APos = (*ac)->globalPosition.getValue();
ArticulationPos[(*a)->articulationIndex.getValue()]=APos;
}
(*ac)->DisplacementArticulationCenter=disp;
out[child].getOrientation() = out[parent].getOrientation() + (*ac)->OrientationArticulationCenter;
out[child].getCenter() = (*ac)->globalPosition.getValue() - out[child].getOrientation().rotate((*ac)->posOnChild.getValue());
out[child].getCenter() += (*ac)->DisplacementArticulationCenter;
break;
}
}
}
//////////////////// buf the actual position of the articulations ////////////////////
CoordinateBuf.clear();
CoordinateBuf.resize(in.size());
for (unsigned int c=0; c<in.size(); c++)
{
CoordinateBuf[c].x() = in[c].x();
}
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::applyJ( typename Out::VecDeriv& out, const typename In::VecDeriv& in, const typename InRoot::VecDeriv* inroot )
{
//sout<<" \n ApplyJ ";
OutVecCoord& xto = *this->toModel->getX();
out.clear();
out.resize(xto.size());
// Copy the root position if a rigid root model is present
if (inroot)
{
// sout << "Root Model Name = " << rootModel->getName() << sendl;
out[0] = (*inroot)[inroot->size()-1];
}
else
out[0] = OutDeriv();
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.begin();
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = articulationCenters.end();
int i = 0;
for (; ac != acEnd; ac++)
{
int parent = (*ac)->parentIndex.getValue();
int child = (*ac)->childIndex.getValue();
out[child].getVOrientation() += out[parent].getVOrientation();
Vec<3,OutReal> P = xto[parent].getCenter();
Vec<3,OutReal> C = xto[child].getCenter();
out[child].getVCenter() = out[parent].getVCenter() + cross(P-C, out[parent].getVOrientation());
//sout<<"P:"<< P <<"- C: "<< C;
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aEnd = articulations.end();
for (; a != aEnd; a++)
{
int ind = (*a)->articulationIndex.getValue();
InCoord value = in[ind];
Vec<3,OutReal> axis = ArticulationAxis[ind];
Vec<3,OutReal> A = ArticulationPos[ind];
if ((*a)->rotation.getValue())
{
out[child].getVCenter() += cross(A-C, axis*value.x());
out[child].getVOrientation() += axis*value.x();
}
if ((*a)->translation.getValue())
{
out[child].getVCenter() += axis*value.x();
}
i++;
}
}
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::applyJT( typename In::VecDeriv& out, const typename Out::VecDeriv& in, typename InRoot::VecDeriv* outroot )
{
//sout<<"\n ApplyJt";
OutVecCoord& xto = *this->toModel->getX();
// InVecCoord &xfrom= *this->fromModel->getX();
//apply(xto,xfrom);
OutVecDeriv fObjects6DBuf = in;
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.end();
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acBegin = articulationCenters.begin();
int i=ArticulationAxis.size();
while (ac != acBegin)
{
ac--;
int parent = (*ac)->parentIndex.getValue();
int child = (*ac)->childIndex.getValue();
fObjects6DBuf[parent].getVCenter() += fObjects6DBuf[child].getVCenter();
Vec<3,OutReal> P = xto[parent].getCenter();
Vec<3,OutReal> C = xto[child].getCenter();
fObjects6DBuf[parent].getVOrientation() += fObjects6DBuf[child].getVOrientation() + cross(C-P, fObjects6DBuf[child].getVCenter());
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.end();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aBegin = articulations.begin();
while (a != aBegin)
{
a--;
i--;
int ind = (*a)->articulationIndex.getValue();
Vec<3,OutReal> axis = ArticulationAxis[ind];
Vec<3,Real> A = ArticulationPos[ind] ;
OutDeriv T;
T.getVCenter() = fObjects6DBuf[child].getVCenter();
T.getVOrientation() = fObjects6DBuf[child].getVOrientation() + cross(C-A, fObjects6DBuf[child].getVCenter());
if ((*a)->rotation.getValue())
{
out[ind].x() += (Real)dot(axis, T.getVOrientation());
}
if ((*a)->translation.getValue())
{
out[ind].x() += (Real)dot(axis, T.getVCenter());
}
}
}
if (outroot)
{
(*outroot)[outroot->size()-1] += fObjects6DBuf[0];
}
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::applyJT( typename In::VecConst& out, const typename Out::VecConst& in, typename InRoot::VecConst* outRoot )
{
// sout << "ApplyJT const - size in = " << in.size() << sendl;
OutVecCoord& xto = *this->toModel->getX();
out.resize(in.size());
unsigned int sizeOutRoot =0;
if (rootModel!=NULL)
{
sizeOutRoot = outRoot->size();
outRoot->resize(in.size() + sizeOutRoot); // the constraints are all transmitted to the root
}
for(unsigned int i=0; i<in.size(); i++)
{
OutConstraintIterator itOut;
for (itOut=in[i].getData().begin();itOut!=in[i].getData().end();itOut++)
{
int childIndex = itOut->first;
const OutDeriv valueConst = (OutDeriv) itOut->second;
Vec<3,OutReal> C = xto[childIndex].getCenter();
vector<ArticulatedHierarchyContainer::ArticulationCenter*> ACList = ahc->getAcendantList(childIndex);
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = ACList.begin();
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = ACList.end();
int ii=0;
for (; ac != acEnd; ac++)
{
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aEnd = articulations.end();
for (; a != aEnd; a++)
{
int ind= (*a)->articulationIndex.getValue();
InDeriv data;
Vec<3,OutReal> axis = ArticulationAxis[ind]; // xto[parent].getOrientation().rotate((*a)->axis.getValue());
Vec<3,Real> A = ArticulationPos[ind] ; // Vec<3,OutReal> posAc = (*ac)->globalPosition.getValue();
OutDeriv T;
T.getVCenter() = valueConst.getVCenter();
T.getVOrientation() = valueConst.getVOrientation() + cross(C - A, valueConst.getVCenter());
if ((*a)->rotation.getValue())
{
data = (Real)dot(axis, T.getVOrientation());
}
if ((*a)->translation.getValue())
{
data = (Real)dot(axis, T.getVCenter());
//printf("\n weightedNormalArticulation : %f", constArt.data);
}
out[i].insert(ind,data);
ii++;
}
}
if (rootModel!=NULL)
{
unsigned int indexT = rootModel->getSize()-1; // On applique sur le dernier noeud
Vec<3,OutReal> posRoot = xto[indexT].getCenter();
OutDeriv T;
T.getVCenter() = valueConst.getVCenter();
T.getVOrientation() = valueConst.getVOrientation() + cross(C - posRoot, valueConst.getVCenter());
(*outRoot)[sizeOutRoot+i].insert(indexT,T);
//sout<< "constraintT = data : "<< T << "index : "<< indexT<<sendl;
//(*outRoot)[i].push_back(constraintT);
// sout<< "constraintT = data : "<< T << "index : "<< indexT<<sendl;
}
}
}
// sout<<"End ApplyJT const"<<sendl;
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::propagateX()
{
if (this->fromModel!=NULL && this->toModel->getX()!=NULL && this->fromModel->getX()!=NULL)
apply(*this->toModel->getX(), *this->fromModel->getX(), (rootModel==NULL ? NULL : rootModel->getX()));
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::propagateXfree()
{
if (this->fromModel!=NULL && this->toModel->getXfree()!=NULL && this->fromModel->getXfree()!=NULL)
apply(*this->toModel->getXfree(), *this->fromModel->getXfree(), (rootModel==NULL ? NULL : rootModel->getXfree()));
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::propagateV()
{
if (this->fromModel!=NULL && this->toModel->getV()!=NULL && this->fromModel->getV()!=NULL)
applyJ(*this->toModel->getV(), *this->fromModel->getV(), (rootModel==NULL ? NULL : rootModel->getV()));
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::propagateDx()
{
if (this->fromModel!=NULL && this->toModel->getDx()!=NULL && this->fromModel->getDx()!=NULL)
applyJ(*this->toModel->getDx(), *this->fromModel->getDx(), (rootModel==NULL ? NULL : rootModel->getDx()));
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::accumulateForce()
{
if (this->fromModel!=NULL && this->toModel->getF()!=NULL && this->fromModel->getF()!=NULL)
applyJT(*this->fromModel->getF(), *this->toModel->getF(), (rootModel==NULL ? NULL : rootModel->getF()));
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::accumulateDf()
{
if (this->fromModel!=NULL && this->toModel->getF()!=NULL && this->fromModel->getF()!=NULL)
applyJT(*this->fromModel->getF(), *this->toModel->getF(), (rootModel==NULL ? NULL : rootModel->getF()));
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::accumulateConstraint()
{
if (this->fromModel!=NULL && this->toModel->getC()!=NULL && this->fromModel->getC()!=NULL)
{
applyJT(*this->fromModel->getC(), *this->toModel->getC(), (rootModel==NULL ? NULL : rootModel->getC()));
// Accumulate contacts indices through the MechanicalMapping
std::vector<unsigned int>::iterator it = this->toModel->getConstraintId().begin();
std::vector<unsigned int>::iterator itEnd = this->toModel->getConstraintId().end();
while (it != itEnd)
{
this->fromModel->setConstraintId(*it);
// in case of a "multi-mapping" (the articulation system is placede on a simulated object)
// the constraints are transmitted to the rootModle (the <rigidtype> object which is the root of the articulated system)
if (rootModel!=NULL)
rootModel->setConstraintId(*it);
it++;
}
}
}
template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::draw()
{
if (!this->getShow()) return;
std::vector< Vector3 > points;
std::vector< Vector3 > pointsLine;
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.begin();
vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = articulationCenters.end();
unsigned int i=0;
for (; ac != acEnd; ac++)
{
// int parent = (*ac)->parentIndex.getValue();
// int child = (*ac)->childIndex.getValue();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();
vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aEnd = articulations.end();
for (; a != aEnd; a++)
{
// Articulation Pos and Axis are based on the configuration of the parent
int ind= (*a)->articulationIndex.getValue();
points.push_back(ArticulationPos[ind]);
pointsLine.push_back(ArticulationPos[ind]);
Vec<3,OutReal> Pos_axis = ArticulationPos[ind] + ArticulationAxis[ind];
pointsLine.push_back(Pos_axis);
i++;
}
}
simulation::getSimulation()->DrawUtility.drawPoints(points, 10, Vec<4,float>(1,0.5,0.5,1));
simulation::getSimulation()->DrawUtility.drawLines(pointsLine, 1, Vec<4,float>(0,0,1,1));
//
//OutVecCoord& xto = *this->toModel->getX();
//glDisable (GL_LIGHTING);
//glPointSize(2);
}
} // namespace mapping
} // namespace component
} // namespace sofa
#endif
|