This file is indexed.

/usr/include/sofa/helper/PolarDecompose.h is in libsofa1-dev 1.0~beta4-10ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                              SOFA :: Framework                              *
*                                                                             *
* Authors: M. Adam, J. Allard, B. Andre, P-J. Bensoussan, S. Cotin, C. Duriez,*
* H. Delingette, F. Falipou, F. Faure, S. Fonteneau, L. Heigeas, C. Mendoza,  *
* M. Nesme, P. Neumann, J-P. de la Plata Alcade, F. Poyer and F. Roy          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/
#ifndef SOFA_HELPER_POLARDECOMPOSE_H
#define SOFA_HELPER_POLARDECOMPOSE_H

#include <sofa/defaulttype/Mat.h>
#include <sofa/helper/helper.h>

namespace sofa
{

namespace helper
{

/**** FROM Decompose.c ****/
/* Ken Shoemake, 1993     */

/******* Matrix Preliminaries *******/

/** Set MadjT to transpose of inverse of M times determinant of M **/
template<class Real>
void adjoint_transpose(const defaulttype::Mat<3,3,Real>& M, defaulttype::Mat<3,3,Real>& MadjT)
{
	MadjT[0] = cross(M[1],M[2]);
	MadjT[1] = cross(M[2],M[0]);
	MadjT[2] = cross(M[0],M[1]);
}

/** Compute the infinity norm of M **/
template<class Real>
Real norm_inf(const defaulttype::Mat<3,3,Real>& M)
{
	Real sum, max = 0;
	for (int i=0;i<3;i++)
	{
		sum = (Real)(fabs(M[i][0])+fabs(M[i][1])+fabs(M[i][2]));
		if (max<sum) max = sum;
	}
	return max;
}

/** Compute the 1 norm of M **/
template<class Real>
Real norm_one(const defaulttype::Mat<3,3,Real>& M)
{
	Real sum, max = 0;
	for (int i=0;i<3;i++)
	{
		sum = (Real)(fabs(M[0][i])+fabs(M[1][i])+fabs(M[2][i]));
		if (max<sum) max = sum;
	}
	return max;
}

/** Return index of column of M containing maximum abs entry, or -1 if M=0 **/
template<class Real>
int find_max_col(const defaulttype::Mat<3,3,Real>& M)
{
    Real abs, max = 0;
    int col = -1;
    for (int i=0; i<3; i++)
		for (int j=0; j<3; j++) {
			abs = M[i][j]; if (abs<0.0) abs = -abs;
			if (abs>max) {max = abs; col = j;}
		}
    return col;
}

/** Setup u for Household reflection to zero all v components but first **/
template<class Real>
void make_reflector(const defaulttype::Vec<3,Real>& v, defaulttype::Vec<3,Real>& u)
{
    Real s = (Real)sqrt(dot(v, v));
    u[0] = v[0]; u[1] = v[1];
    u[2] = v[2] + ((v[2]<0.0) ? -s : s);
    s = (Real)sqrt(2.0/dot(u, u));
    u[0] = u[0]*s; u[1] = u[1]*s; u[2] = u[2]*s;
}

/** Apply Householder reflection represented by u to column vectors of M **/
template<class Real>
void reflect_cols(defaulttype::Mat<3,3,Real>& M, const defaulttype::Vec<3,Real>& u)
{
    for (int i=0; i<3; i++)
	{
		Real s = u[0]*M[0][i] + u[1]*M[1][i] + u[2]*M[2][i];
		for (int j=0; j<3; j++)
			M[j][i] -= u[j]*s;
    }
}
/** Apply Householder reflection represented by u to row vectors of M **/
template<class Real>
void reflect_rows(defaulttype::Mat<3,3,Real>& M, const defaulttype::Vec<3,Real>& u)
{
    for (int i=0; i<3; i++)
	{
		Real s = dot(u, M[i]);
		for (int j=0; j<3; j++)
			M[i][j] -= u[j]*s;
    }
}

/** Find orthogonal factor Q of rank 1 (or less) M **/
template<class Real>
void do_rank1(defaulttype::Mat<3,3,Real>& M, defaulttype::Mat<3,3,Real>& Q)
{
    defaulttype::Vec<3,Real> v1, v2;
    Real s;
    int col;
    Q.identity();
    /* If rank(M) is 1, we should find a non-zero column in M */
    col = find_max_col(M);
    if (col<0) return; /* Rank is 0 */
    v1[0] = M[0][col]; v1[1] = M[1][col]; v1[2] = M[2][col];
    make_reflector(v1, v1); reflect_cols(M, v1);
    v2[0] = M[2][0]; v2[1] = M[2][1]; v2[2] = M[2][2];
    make_reflector(v2, v2); reflect_rows(M, v2);
    s = M[2][2];
    if (s<0.0) Q[2][2] = -1.0;
    reflect_cols(Q, v1); reflect_rows(Q, v2);
}

/** Find orthogonal factor Q of rank 2 (or less) M using adjoint transpose **/
template<class Real>
void do_rank2(defaulttype::Mat<3,3,Real>& M, defaulttype::Mat<3,3,Real>& MadjT, defaulttype::Mat<3,3,Real>& Q)
{
    defaulttype::Vec<3,Real> v1, v2;
    Real w, x, y, z, c, s, d;
    int col;
    /* If rank(M) is 2, we should find a non-zero column in MadjT */
    col = find_max_col(MadjT);
    if (col<0) {do_rank1(M, Q); return;} /* Rank<2 */
    v1[0] = MadjT[0][col]; v1[1] = MadjT[1][col]; v1[2] = MadjT[2][col];
    make_reflector(v1, v1); reflect_cols(M, v1);
    v2 = cross(M[0], M[1]);
    make_reflector(v2, v2); reflect_rows(M, v2);
    w = M[0][0]; x = M[0][1]; y = M[1][0]; z = M[1][1];
    if (w*z>x*y)
    {
        c = z+w; s = y-x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
        Q[0][0] = Q[1][1] = c; Q[0][1] = -(Q[1][0] = s);
    }
    else
    {
        c = z-w; s = y+x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
        Q[0][0] = -(Q[1][1] = c); Q[0][1] = Q[1][0] = s;
    }
    Q[0][2] = Q[2][0] = Q[1][2] = Q[2][1] = 0.0; Q[2][2] = 1.0;
    reflect_cols(Q, v1); reflect_rows(Q, v2);
}

/******* Polar Decomposition *******/

/* Polar Decomposition of 3x3 matrix,
 * M = QS.  See Nicholas Higham and Robert S. Schreiber,
 * Fast Polar Decomposition of An Arbitrary Matrix,
 * Technical Report 88-942, October 1988,
 * Department of Computer Science, Cornell University.
 */
template<class Real>
Real polar_decomp(const defaulttype::Mat<3,3,Real>& M, defaulttype::Mat<3,3,Real>& Q, defaulttype::Mat<3,3,Real>& S)
{
    defaulttype::Mat<3,3,Real> Mk, MadjTk, Ek;
    Real det, M_one, M_inf, MadjT_one, MadjT_inf, E_one, gamma, g1, g2;
    Mk.transpose(M);
    M_one = norm_one(Mk);  M_inf = norm_inf(Mk);
    do
	{
		adjoint_transpose(Mk, MadjTk);
		det = dot(Mk[0], MadjTk[0]);
		if (det==0.0)
		{
			do_rank2(Mk, MadjTk, Mk);
			break;
		}
		MadjT_one = norm_one(MadjTk); MadjT_inf = norm_inf(MadjTk);
		gamma = (Real)sqrt(sqrt((MadjT_one*MadjT_inf)/(M_one*M_inf))/fabs(det));
		g1 = gamma*((Real)0.5);
		g2 = ((Real)0.5)/(gamma*det);
		Ek = Mk;
		Mk = Mk*g1 + MadjTk*g2;
		Ek -= Mk;
		E_one = norm_one(Ek);
		M_one = norm_one(Mk);  M_inf = norm_inf(Mk);
    }
	while (E_one>(M_one*1.0e-6));
    Q.transpose(Mk);
    S = Mk*M;
    for (int i=0; i<3; i++)
		for (int j=i+1; j<3; j++)
			S[i][j] = S[j][i] = ((Real)0.5)*(S[i][j]+S[j][i]);
    return (det);

}


} // namespace helper

} // namespace sofa

#endif