/usr/include/stk/FormSwep.h is in libstk0-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | #ifndef STK_FORMSWEP_H
#define STK_FORMSWEP_H
#include "Filter.h"
namespace stk {
/***************************************************/
/*! \class FormSwep
\brief STK sweepable formant filter class.
This class implements a formant (resonance) which can be "swept"
over time from one frequency setting to another. It provides
methods for controlling the sweep rate and target frequency.
by Perry R. Cook and Gary P. Scavone, 1995--2014.
*/
/***************************************************/
class FormSwep : public Filter
{
public:
//! Default constructor creates a second-order pass-through filter.
FormSwep( void );
//! Class destructor.
~FormSwep();
//! A function to enable/disable the automatic updating of class data when the STK sample rate changes.
void ignoreSampleRateChange( bool ignore = true ) { ignoreSampleRateChange_ = ignore; };
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate poles with the given \e frequency (in Hz)
and \e radius from the z-plane origin. The filter zeros are
placed at z = 1, z = -1, and the coefficients are then normalized
to produce a constant unity gain (independent of the filter \e
gain parameter). The resulting filter frequency response has a
resonance at the given \e frequency. The closer the poles are to
the unit-circle (\e radius close to one), the narrower the
resulting resonance width. An unstable filter will result for \e
radius >= 1.0. The \e frequency value should be between zero and
half the sample rate.
*/
void setResonance( StkFloat frequency, StkFloat radius );
//! Set both the current and target resonance parameters.
void setStates( StkFloat frequency, StkFloat radius, StkFloat gain = 1.0 );
//! Set target resonance parameters.
void setTargets( StkFloat frequency, StkFloat radius, StkFloat gain = 1.0 );
//! Set the sweep rate (between 0.0 - 1.0).
/*!
The formant parameters are varied in increments of the
sweep rate between their current and target values.
A sweep rate of 1.0 will produce an immediate change in
resonance parameters from their current values to the
target values. A sweep rate of 0.0 will produce no
change in resonance parameters.
*/
void setSweepRate( StkFloat rate );
//! Set the sweep rate in terms of a time value in seconds.
/*!
This method adjusts the sweep rate based on a
given time for the formant parameters to reach
their target values.
*/
void setSweepTime( StkFloat time );
//! Return the last computed output value.
StkFloat lastOut( void ) const { return lastFrame_[0]; };
//! Input one sample to the filter and return a reference to one output.
StkFloat tick( StkFloat input );
//! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
/*!
The StkFrames argument reference is returned. The \c channel
argument must be less than the number of channels in the
StkFrames argument (the first channel is specified by 0).
However, range checking is only performed if _STK_DEBUG_ is
defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
//! Take a channel of the \c iFrames object as inputs to the filter and write outputs to the \c oFrames object.
/*!
The \c iFrames object reference is returned. Each channel
argument must be less than the number of channels in the
corresponding StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
protected:
virtual void sampleRateChanged( StkFloat newRate, StkFloat oldRate );
bool dirty_;
StkFloat frequency_;
StkFloat radius_;
StkFloat startFrequency_;
StkFloat startRadius_;
StkFloat startGain_;
StkFloat targetFrequency_;
StkFloat targetRadius_;
StkFloat targetGain_;
StkFloat deltaFrequency_;
StkFloat deltaRadius_;
StkFloat deltaGain_;
StkFloat sweepState_;
StkFloat sweepRate_;
};
inline StkFloat FormSwep :: tick( StkFloat input )
{
if ( dirty_ ) {
sweepState_ += sweepRate_;
if ( sweepState_ >= 1.0 ) {
sweepState_ = 1.0;
dirty_ = false;
radius_ = targetRadius_;
frequency_ = targetFrequency_;
gain_ = targetGain_;
}
else {
radius_ = startRadius_ + (deltaRadius_ * sweepState_);
frequency_ = startFrequency_ + (deltaFrequency_ * sweepState_);
gain_ = startGain_ + (deltaGain_ * sweepState_);
}
this->setResonance( frequency_, radius_ );
}
inputs_[0] = gain_ * input;
lastFrame_[0] = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
lastFrame_[0] -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = lastFrame_[0];
return lastFrame_[0];
}
inline StkFrames& FormSwep :: tick( StkFrames& frames, unsigned int channel )
{
#if defined(_STK_DEBUG_)
if ( channel >= frames.channels() ) {
oStream_ << "FormSwep::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
unsigned int hop = frames.channels();
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop )
*samples = tick( *samples );
return frames;
}
inline StkFrames& FormSwep :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
{
#if defined(_STK_DEBUG_)
if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
oStream_ << "FormSwep::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *iSamples = &iFrames[iChannel];
StkFloat *oSamples = &oFrames[oChannel];
unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop )
*oSamples = tick( *iSamples );
return iFrames;
}
} // stk namespace
#endif
|