This file is indexed.

/usr/bin/svm-subset is in libsvm-tools 3.12-1.1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#! /usr/bin/python
from sys import argv, exit, stdout, stderr
from random import randint

method = 0
global n
global dataset_filename
subset_filename = ""
rest_filename = ""

def exit_with_help():
	print("""\
Usage: {0} [options] dataset number [output1] [output2]

This script selects a subset of the given dataset.

options:
-s method : method of selection (default 0)
     0 -- stratified selection (classification only)
     1 -- random selection

output1 : the subset (optional)
output2 : rest of the data (optional)
If output1 is omitted, the subset will be printed on the screen.""".format(argv[0]))
	exit(1)

def process_options():
	global method, n
	global dataset_filename, subset_filename, rest_filename
	
	argc = len(argv)
	if argc < 3:
		exit_with_help()

	i = 1
	while i < len(argv):
		if argv[i][0] != "-":
			break
		if argv[i] == "-s":
			i = i + 1
			method = int(argv[i])
			if method < 0 or method > 1:
				print("Unknown selection method {0}".format(method))
				exit_with_help()
		i = i + 1

	dataset_filename = argv[i]
	n = int(argv[i+1])
	if i+2 < argc:
		subset_filename = argv[i+2]
	if i+3 < argc:
		rest_filename = argv[i+3]

def main():
	class Label:
		def __init__(self, label, index, selected):
			self.label = label
			self.index = index
			self.selected = selected

	process_options()
	
	# get labels
	i = 0
	labels = []
	f = open(dataset_filename, 'r')
	for line in f:
		labels.append(Label(float((line.split())[0]), i, 0))
		i = i + 1
	f.close()
	l = i
	
	# determine where to output
	if subset_filename != "":
		file1 = open(subset_filename, 'w')
	else:
		file1 = stdout
	split = 0
	if rest_filename != "":
		split = 1	
		file2 = open(rest_filename, 'w')
	
	# select the subset
	warning = 0
	if method == 0: # stratified
		labels.sort(key = lambda x: x.label)
		
		label_end = labels[l-1].label + 1
		labels.append(Label(label_end, l, 0))

		begin = 0
		label = labels[begin].label
		for i in range(l+1):
			new_label = labels[i].label
			if new_label != label:
				nr_class = i - begin
				k = i*n//l - begin*n//l
				# at least one instance per class
				if k == 0:
					k = 1
					warning = warning + 1
				for j in range(nr_class):
					if randint(0, nr_class-j-1) < k:
						labels[begin+j].selected = 1
						k = k - 1
				begin = i
				label = new_label
	elif method == 1: # random
		k = n
		for i in range(l):
			if randint(0,l-i-1) < k:
				labels[i].selected = 1
				k = k - 1
			i = i + 1

	# output
	i = 0
	if method == 0:
		labels.sort(key = lambda x: int(x.index))
	
	f = open(dataset_filename, 'r')
	for line in f:
		if labels[i].selected == 1:
			file1.write(line)
		else:
			if split == 1:
				file2.write(line)
		i = i + 1

	if warning > 0:
		stderr.write("""\
Warning:
1. You may have regression data. Please use -s 1.
2. Classification data unbalanced or too small. We select at least 1 per class.
   The subset thus contains {0} instances.
""".format(n+warning))

	# cleanup
	f.close()
	
	file1.close()
	
	if split == 1:
		file2.close()

main()