/usr/include/terralib/kernel/TeProjection.h is in libterralib-dev 4.3.0+dfsg.2-4build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 | /************************************************************************************
TerraLib - a library for developing GIS applications.
Copyright 2001-2007 INPE and Tecgraf/PUC-Rio.
This code is part of the TerraLib library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
You should have received a copy of the GNU Lesser General Public
License along with this library.
The authors reassure the license terms regarding the warranties.
They specifically disclaim any warranties, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose.
The library provided hereunder is on an "as is" basis, and the authors have no
obligation to provide maintenance, support, updates, enhancements, or modifications.
In no event shall INPE and Tecgraf / PUC-Rio be held liable to any party for direct,
indirect, special, incidental, or consequential damages arising out of the use
of this library and its documentation.
*************************************************************************************/
/*! \file TeProjection.h
\brief This file contains support do deal with geographical projections
*/
#ifndef __TERRALIB_INTERNAL_PROJECTION_H
#define __TERRALIB_INTERNAL_PROJECTION_H
#include "TeCoord2D.h"
#include "TeDefines.h"
#include "TeDatum.h"
#include <stdio.h>
#include <map>
#include <string>
using namespace std;
//! Earth hemispheres
enum TeHemisphere
{ TeNORTH_HEM, TeSOUTH_HEM };
//! Number of supported projections in TerraLib
const int NUM_PROJ = 12;
//! Set of informations required by projections
struct TL_DLL TeProjInfo
{
int hasUnits;
int hasLon0;
int hasLat0;
int hasStlat1;
int hasStlat2;
int hasScale;
int hasOffx;
int hasOffy;
};
//! A map from name of projections to a set of informations that it requires
typedef map<string,TeProjInfo> TeProjInfoMap;
//! Returns the set of informations required by a given projection
TL_DLL TeProjInfo TeProjectionInfo ( const string& projName );
TL_DLL const char** TeGetProjInfo();
// ============ PROJECTION PARAMETERS ===============
class TeProjection;
//FAMI Added Satellite parameters
//! Set of parameters that define a geographical projection
struct TL_DLL TeProjectionParams
{
string name; //!< projection name
TeDatum datum; //!< spheroid
double lon0; //!< Longitude of origin (rad)
double lat0; //!< Latitude of origin (rad)
double offx; //!< X (projection coordinate) offset (m)
double offy; //!< Y (projection coordinate) offset (m)
double stlat1; //!< First standard parallel (rad)
double stlat2; //!< Second standard paralel (rad)
string units; //!< units
double scale; //!< projection scale (used in UTM)
TeHemisphere hemisphere; //!< Hemisphere
double pri; //!< Sensor angle resolution along y axis (rad) (used in Satellite)
double prj; //!< Sensor angle resolution along x axis (rad) (used in Satellite)
double pis; //!< Y-coordinate of sub-satellite point (used in Satellite)
double pjs; //!< X-coordinate of sub-satellite point (used in Satellite)
double prs; //!< Radius of satellite orbit (m) (used in Satellite)
double pscn; //!< Scanning mode: 0-WE/NS, 1-SN/EW (used in Satellite)
double pyaw; //!< Grid orientation, i.e., angle in radians between the increasing y axis and the meridian of the sub-satellite point along the direction of increasing latitude (used in Satellite)
};
//========== PROJECTION FACTORY
//! A factory of projections
class TL_DLL TeProjectionFactory
{
public:
static TeProjection* make( const TeProjectionParams& );
static TeProjection* make(int epsgCode);
};
//! Provides methods that are required to handle all map projection definitions and georeferencing of satellite images.
/*!
Specifies earth and projection parameters that represent a common
ground in terms of defining conventional map projections, navigating
on low-resolution images of geostationary satellites.
*/
class TL_DLL TeProjection
{
protected:
string GPname; // projection name
TeDatum GPdatum; // spheroid
double GPlon0; // Longitude of origin (rad)
double GPlat0; // Latitude of origin (rad)
double GPoffx; // X (projection coordinate) offset (m)
double GPoffy; // Y (projection coordinate) offset (m)
double GPstlat1; // First standard parallel (rad)
double GPstlat2; // Second standard parallel (rad)
string GPunits; // units
double GPscale; // scale (used for UTM)
TeHemisphere GPhemisphere; // Hemisphere
TeProjection* GPdestination; // destination projection
int GPid; // id
int GPepsgCode;
//! Changes planimetic datum
/*! Computes changes in geodetic coordinates due to
planimetric datum changes. First, the method finds
geocentric cartesian coordinates on the initial datum,
then applies datum shifts, and finally computes the
new geodetic coordinates on the final datum. The new
geodetic latitude is computed iteractively, the old
geodetic latitude being used as initial guess.
\param x Initial longitude (rad);
\param y Initial latitude (rad).
\return x Final longitude (rad);
\return y Final latitude (rad).
\note
x must be a valid longitude ([0,pi] or [0,-pi]) and
y must be a valid latitude ([0,pi/2] or [0,-pi/2]).
*/
void ChangeLL (double &x, double &y);
public:
//! Normal constructor
/*!
Initializes projection parameters
\param name projection name
\param datum spheroid
\param lon0 longitude of origin (in radians)
\param lat0 latitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param stlat1 first standard parallel (in radians)
\param stlat2 second standard parallel (in radians)
\param units projection unit
\param scale scale (used for UTM)
\param hem hemisphere
*/
TeProjection ( const string& name, const TeDatum& datum,
double lon0 = 0., double lat0=0., double offx = 0., double offy = 0.,
double stlat1 = 0., double stlat2 = 0.,
const string units = "Meters",
double scale = 1., TeHemisphere hem = TeSOUTH_HEM, int epsgcode = 99999):
GPname ( name ),
GPdatum ( datum ),
GPlon0 ( lon0 ),
GPlat0 ( lat0 ),
GPoffx ( offx ),
GPoffy ( offy ),
GPstlat1 ( stlat1 ),
GPstlat2 ( stlat2 ),
GPunits ( units ),
GPscale ( scale ),
GPhemisphere ( hem ),
GPdestination (0),
GPid(0),
GPepsgCode(epsgcode)
{}
TeProjection ():
GPname ( "NoProjection" ),
GPlon0 ( 0. ),
GPlat0 ( 0. ),
GPoffx ( 0. ),
GPoffy ( 0. ),
GPstlat1 ( 0. ),
GPstlat2 ( 0. ),
GPunits ( "Units" ),
GPscale ( 1 ),
GPhemisphere ( TeSOUTH_HEM ),
GPdestination (0),
GPid(0),
GPepsgCode(99999)
{}
//! Copy Constructor
TeProjection(const TeProjection&);
//! Operator =
TeProjection& operator=(const TeProjection&);
//! Destructor.
virtual ~TeProjection (){}
//! Returns the projection name;
string& name()
{ return GPname; }
//! Returns the projection datum
TeDatum datum()
{ return GPdatum; }
//! Sets the datum associated to the projection
void setDatum(const TeDatum& datum)
{ GPdatum = datum; }
//! Return the projection units
string& units()
{ return GPunits; }
//! Return the longitude of origin ( in rad)
double lon0() { return GPlon0; }
//! Return the Latitude of origin (rad)
double lat0() { return GPlat0; }
//! Return X (projection coordinate) offset (m)
double offX() { return GPoffx; }
//! Return Y (projection coordinate) offset (m)
double offY() { return GPoffy; }
//! Return First standard parallel (rad)
double stLat1() { return GPstlat1; }
//! Return the second standard parallel (rad)
double stLat2() { return GPstlat2; }
//! Return the scale (used for UTM)
double scale() { return GPscale; }
int epsgCode();
//! Return the Hemisphere
TeHemisphere hemisphere() { return GPhemisphere; }
// Returns a the parameters of this projection
virtual TeProjectionParams params () const; //FAMI
bool operator== (const TeProjection& proj);
//! Pure virtual method that transforms geodetic into projection coordinates
/*!
This method is implemented for each available
projection class and represents the so-called
direct formulas, which compute projection
coordinates from geodetic coordinates.
\param p Geodetic coordinates (radian).
\return p Projection coordinates (m).
\note
Geodetic coordinates must be a valid latitude
([0,pi/2] or [0,-pi/2]) and a valid longitude
([0,pi] or [0,-pi]).
*/
virtual TeCoord2D LL2PC (const TeCoord2D& p) = 0;
virtual void LL2PC (ostream&) const {} //FAMI
//! Pure virtual method that transforms projection into geodetic coordinates.
/*!
This method is implemented for each available
projection class and represents the so-called
inverse formulas, which compute geodetic
coordinates from projection coordinates.
\param p Projection coordinates (m).
\return p Geodetic coordinates (rad).
\note X and Y projection coordinates must be both valid,
within the typical range of each projection class.
*/
virtual TeCoord2D PC2LL (const TeCoord2D& p) = 0;
virtual void LL2PC (double, double, double&, double&) const {printf("\nWRONG"); return;} //FAMI
virtual void PC2LL (double, double, double&, double&) {printf("\nWRONG"); return;} //FAMI
//! Sets the projection to which a Latitude/Longitude value will be generated by the current projection by calling changeLL in PC2LL method
void setDestinationProjection (TeProjection* proj)
{ GPdestination = proj; }
//! Concrete method that prints information about a projection
void print ( FILE* file_ );
//! Concrete method that prints information about a projection in a string
string describe ();
//! Get projection unique id in the database
int id() { return GPid;}
//! Set projection unique id in the database
void id(int i) { GPid = i;}
};
//! Provides methods that are required to handle the UTM map projection.
/*!
Specifies methods that are necessary to establish the relation between
geodetic and UTM coordinates. UTM is a conformal projection system that
uses the planimetric datum Sad69 or Corrego Alegre (Hayford ellipsoid).
\sa TeCoord2D TeDatum TeProjection.
*/
class TL_DLL TeUtm : public TeProjection
{
public:
//! Constructor
/*!
Initializes projection parameters
\param datum spheroid
\param long0 longitude of origin (in radians)
\param lat0 latitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param units projection unit
\param scale scale (used for UTM)
\param hemisphere hemisphere
*/
TeUtm ( const TeDatum& datum, double long0, double lat0 = 0.,
double offx = 500000., double offy = 10000000.,
const string& units = "Meters",
double scale = 0.9996, TeHemisphere hemisphere = TeSOUTH_HEM );
//! Destructor
~TeUtm () {}
//! This implementation of a pure virtual method defined in Projection transforms geodetic into UTM coordinates.
/*!
\param p Geodetic coordinates (rad).
\return p: UTM coordinates (m).
\note
Geodetic coordinates must be a valid latitude
([0,pi/2] or [0,-pi/2]) and a valid longitude
([0,pi] or [0,-pi]). Conventional UTM offsets
(500,000 m and 10,000,000 m) are always added
to the resulting projection coordinates.
*/
virtual TeCoord2D LL2PC(const TeCoord2D& p);
//! This implementation of a pure virtual method defined in
/* Projection transforms UTM into geodetic coordinates.
\param p: UTM coordinates (m).
\return p: Geodetic coordinates (rad).
\note
X and Y UTM coordinates must be both valid, within
their typical range. Conventional UTM offsets are
handled in this method, and therefore must not be
previously subtracted.
*/
virtual TeCoord2D PC2LL(const TeCoord2D& p);
};
//! Provides methods that are required to handle Lambert conformal conic map projection..
/*!
Specifies methods that are necessary to establish the relation between
geodetic and Lambert conformal conic coordinates.
\sa TeCoord2D TeDatum TeProjection.
*/
class TL_DLL TeLambertConformal : public TeProjection
{
public :
//! Constructor
/*!
Initializes projection parameters
\param datum spheroid
\param long0 longitude of origin (in radians)
\param lat0 latitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param stlat1 first standard parallel (in radians)
\param stlat2 second standard parallel (in radians)
\param units projection unit
*/
TeLambertConformal ( const TeDatum& datum,
double long0,
double lat0,
double offx,
double offy,
double stlat1,
double stlat2,
const string& units = "Meters" ):
TeProjection ( "LambertConformal", datum, long0, lat0, offx, offy, stlat1, stlat2, units, 1., TeSOUTH_HEM, 9802)
{}
//! Destructor
~TeLambertConformal () {}
virtual TeCoord2D LL2PC(const TeCoord2D& p);
virtual TeCoord2D PC2LL(const TeCoord2D& p);
};
//! Provides methods that are required to handle the Mercator map projection.
/*!
Specifies methods that are necessary to establish the relation between
geodetic and Mercator coordinates.
*/
class TL_DLL TeMercator : public TeProjection
{
public:
//! Constructor
/*!
Initializes projection parameters
\param datum spheroid
\param long0 longitude of origin (in radians)
\param lat0 latitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param stlat1 first standard parallel (in radians)
\param units projection unit
*/
TeMercator ( const TeDatum& datum,
double long0,
double lat0 = 0.,
double offx = 0.,
double offy = 0.,
double stlat1 = 0.,
const string& units = "Meters"):
TeProjection ( "Mercator", datum, long0, lat0, offx, offy, stlat1, 0., units,1., TeSOUTH_HEM, 9805)
{}
//! Destructor
~TeMercator () {}
virtual TeCoord2D LL2PC(const TeCoord2D& p);
virtual TeCoord2D PC2LL(const TeCoord2D& p);
};
//! Provides methods that are required to handle the Polyconic map projection.
/*!
Specifies methods that are necessary to establish the relation between
geodetic and Polyconic coordinates. Polyconic is a projection system that
is neither conformal nor equal-area.
*/
class TL_DLL TePolyconic : public TeProjection
{
public:
//! Constructor
/*!
Initializes projection parameters
\param datum spheroid
\param long0 longitude of origin (in radians)
\param lat0 latitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param units projection unit
*/
TePolyconic (const TeDatum& datum,
double long0,
double lat0 = 0.,
double offx = 0.,
double offy = 0.,
const string& units = "Meters");
//! Destructor
~TePolyconic () {}
virtual TeCoord2D LL2PC(const TeCoord2D& p);
virtual TeCoord2D PC2LL(const TeCoord2D& p);
};
//! Provides methods that are required to handle the Equidistant Cylindrical map projection.
class TL_DLL TeLatLong : public TeProjection
{
public :
//! Constructor
/*!
Initializes projection parameters
\param datum spheroid
\param units projection unit
*/
TeLatLong( const TeDatum& datum, const string& units = "DecimalDegrees" );
//! Destructor
~TeLatLong () {}
//! Returns the same coordinate
virtual TeCoord2D LL2PC(const TeCoord2D& p);
//! Returns the same coordinate
virtual TeCoord2D PC2LL(const TeCoord2D& p);
virtual void LL2PC(double xi, double yi, double& xo, double& yo) const; //FAMI
virtual void PC2LL(double xi, double yi, double& xo, double& yo); //FAMI
};
//! Provides methods that are required to handle the Albers Conic map projection.
/*
Specifies methods that are necessary to establish the relation between
geodetic and Albers Conic coordinates. Albers Conic is an equal-area
projection system.
*/
class TL_DLL TeAlbers : public TeProjection
{
public:
//! Constructor
/*!
Initializes projection parameters
\param datum spheroid
\param lon0 longitude of origin (in radians)
\param lat0 latitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param stlat1 first standard parallel (in radians)
\param stlat2 second standard parallel (in radians)
\param units projection unit
*/
TeAlbers( const TeDatum& datum,
double lon0,
double lat0,
double offx,
double offy,
double stlat1,
double stlat2,
const string& units = "Meters" ):
TeProjection ( "Albers", datum, lon0, lat0, offx, offy, stlat1, stlat2, units, 1, TeSOUTH_HEM, 9822 )
{}
//! Destructor
~TeAlbers () { }
virtual TeCoord2D LL2PC(const TeCoord2D& p);
virtual TeCoord2D PC2LL(const TeCoord2D& p);
};
//! Provides methods that are required to handle the Miller map projection.
/*!
Specifies methods that are necessary to establish the relation between
geodetic and Miller coordinates. Miller is a projection system that
is neither conformal nor equal-area."
*/
class TL_DLL TeMiller : public TeProjection
{
public:
//! Constructor
/*!
Initializes projection parameters
\param datum spheroid
\param long0 longitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param units projection unit
*/
TeMiller ( const TeDatum& datum,
double long0,
double offx = 0.,
double offy = 0.,
const string& units = "Meters"):
TeProjection ( "Miller", datum, long0, 0., offx, offy, 0., 0., units )
{}
//! Destructor
~TeMiller () {}
virtual TeCoord2D LL2PC(const TeCoord2D& p);
virtual TeCoord2D PC2LL(const TeCoord2D& p);
};
//! Provides methods that are required to handle the Sinusoidal map projection.
/*!
Specifies methods that are necessary to establish the relation between
geodetic and Sinusoidal coordinates. Sinusoidal is a projection system that
is equal-area. Being not an interrupted form,
this implementation assumes a single central meridian. Spheroid options
can be redefined by editing the file "TeDatum.cpp"
*/
class TL_DLL TeSinusoidal : public TeProjection
{
public:
//! Constructor.
/*!
Initializes projection parameters
\param datum spheroid
\param long0 longitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param units projection unit
*/
TeSinusoidal (const TeDatum& datum,
double long0,
double offx = 0.,
double offy = 0.,
const string& units = "Meters"):
TeProjection ( "Sinusoidal", datum, long0, 0., offx, offy, 0., 0., units )
{}
//! Empty destructor.
~TeSinusoidal () {}
virtual TeCoord2D LL2PC(const TeCoord2D& p);
virtual TeCoord2D PC2LL(const TeCoord2D& p);
};
//! Provides methods that are required to handle the Cylindrical Equidistant map projection
class TL_DLL TeCylindricalEquidistant : public TeProjection
{
public:
//! Constructor.
/*!
Initializes projection parameters
\param datum spheroid
\param lon0 longitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param stlat1 first standard parallel (in radians)
\param units projection unit
*/
TeCylindricalEquidistant (const TeDatum& datum,
double lon0,
double offx = 0.,
double offy = 0.,
double stlat1 = 0.,
const string& units = "Meters");
//! Empty destructor.
~TeCylindricalEquidistant () {}
virtual TeCoord2D LL2PC(const TeCoord2D& p);
virtual TeCoord2D PC2LL(const TeCoord2D& p);
};
//! Provides methods that are required to handle the Polar Stereographic map projection
class TL_DLL TePolarStereographic : public TeProjection
{
public:
//! Constructor
/*!
Initializes projection parameters
\param datum spheroid
\param lon0 longitude of origin (in radians)
\param offx X (projection coordinate) offset (m)
\param offy Y (projection coordinate) offset (m)
\param units projection unit
\param hem hemisphere
*/
TePolarStereographic ( const TeDatum& datum,
double lon0,
double offx = 0.,
double offy = 0.,
const string& units = "Meters",
const TeHemisphere hem = TeSOUTH_HEM );
//! Destructor
~TePolarStereographic () {}
virtual TeCoord2D LL2PC(const TeCoord2D& p);
virtual void LL2PC (ostream&) const; //FAMI
virtual TeCoord2D PC2LL(const TeCoord2D& p);
virtual void LL2PC(double xi, double yi, double& xo, double& yo) const; //FAMI
};
//FAMI
class TL_DLL TeSatelliteProjection : public TeProjection
{
private:
double SPri, // Sensor angle resolution along y axis in radians
SPrj, // Sensor angle resolution along x axis in radians
SPis, // Y-coordinate of sub-satellite point
SPjs, // X-coordinate of sub-satellite point
SPrs, // Radius of satellite orbit in meters
SPscn, // Scanning mode: 0-WE/NS, 1-SN/EW
SPyaw; // Grid orientation, i.e., angle in radians between
// the increasing y axis and the meridian of the
// sub-satellite point along the direction of
// increasing latitude.
public:
//! Constructor
/*
\param datum: planimetric datum
\param offx: x offset
\param offy: y offset
\param Pri: Sensor angle resolution along y axis in radians
\param Prj: Sensor angle resolution along x axis in radians
\param Pis: Y-coordinate of sub-satellite point
\param Pjs: X-coordinate of sub-satellite point
\param Pla0: Latitude of sub-satellite point in radians
\param Plo0: Longitude of sub-satellite point in radians
\param Prs: Radius of satellite orbit in meters
\param Pscn: Scanning mode: 0-WE/NS, 1-SN/EW
\param Pyaw: Grid orientation, i.e., angle in radians between
the increasing y axis and the meridian of the
sub-satellite point along the direction of
increasing latitude.
*/
TeSatelliteProjection(const TeDatum& datum, double offx, double offy,
double Pri, double Prj, double Pis, double Pjs, double Pla0, double Plon0,
double Prs,double Pscn, double Pyaw):
TeProjection("Satellite", datum, Plon0, Pla0, offx, offy, 0., 0.,"Meters",1.,TeSOUTH_HEM),
SPri(Pri),
SPrj(Prj),
SPis(Pis),
SPjs(Pjs),
SPrs(Prs),
SPscn(Pscn),
SPyaw(Pyaw) {}
~TeSatelliteProjection() {}
virtual TeCoord2D LL2PC(const TeCoord2D& p);
virtual TeCoord2D PC2LL(const TeCoord2D& p);
// Returns a the parameters of this projection
virtual TeProjectionParams params () const;
};
class TL_DLL TeNoProjection : public TeProjection
{
public:
TeNoProjection(const TeDatum& datum = TeDatum(), const string& units = "Units"):
TeProjection ( "NoProjection", datum, 0., 0., 0., 0., 0, 0, units, 1, TeSOUTH_HEM )
{ GPname = "NoProjection", GPunits = units; }
~TeNoProjection () {}
virtual TeCoord2D LL2PC(const TeCoord2D& p) { return p; }
virtual TeCoord2D PC2LL(const TeCoord2D& p) {return p;};
};
bool TL_DLL decodifyDescription(const string& projDescription, TeProjectionParams& pars);
//! Creates a TeProjection instance from a PROJ4 description
/*
\note This function works only for sproj descriptionsgenerated by TerraLib
*/
TL_DLL TeProjection* TeGetTeProjectionFromSProj(const string& sproj4desc);
//! Generates a PROJ4 description from a TerraLib instance
TL_DLL string TeGetSProjFromTeProjection(TeProjection* teproj);
//! Generates OGC WKT Spatial Reference description from a TerraLib instance
TL_DLL string TeGetWKTFromTeProjection(TeProjection* proj);
//! Creates a TeProjection instance from a OGC WKT Spatial Reference description
/*
\note This function works only for sproj descriptions generated by TerraLib
*/
TL_DLL TeProjection* TeGetTeProjectionFromWKT(const string& wkt);
/** \example convertCoordinates.cpp
* This is an example of how to convert a coordinate from a projection to another
*/
#endif
|